Advertisement

Constant-Round MPC with Fairness and Guarantee of Output Delivery

  • S. Dov GordonEmail author
  • Feng-Hao Liu
  • Elaine Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9216)

Abstract

We study the round complexity of multiparty computation with fairness and guaranteed output delivery, assuming existence of an honest majority. We demonstrate a new lower bound and a matching upper bound. Our lower bound rules out any two-round fair protocols in the standalone model, even when the parties are given access to a common reference string (CRS). The lower bound follows by a reduction to the impossibility result of virtual black box obfuscation of arbitrary circuits.

Then we demonstrate a three-round protocol with guarantee of output delivery, which in general is harder than achieving fairness (since the latter allows the adversary to force a fair abort). We develop a new construction of a threshold fully homomorphic encryption scheme, with a new property that we call “flexible” ciphertexts. Roughly, our threshold encryption scheme allows parties to adapt flexible ciphertexts to the public keys of the non-aborting parties, which provides a way of handling aborts without adding any communication.

Keywords

Honest Party Malicious Adversary Common Reference String Homomorphic Encryption Scheme Corrupted Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is partially supported by an NSF grant CNS-1314857, a Sloan Fellowship, and Google Research Awards.

References

  1. 1.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012) Google Scholar
  2. 2.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001) Google Scholar
  3. 3.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990Google Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988Google Scholar
  5. 5.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  6. 6.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28–30, 1986, Berkeley, California, USA, pp. 364–369 (1986)Google Scholar
  7. 7.
    Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Damgård, I.B., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005) Google Scholar
  9. 9.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 566. Springer, Heidelberg (2001) Google Scholar
  10. 10.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 178. Springer, Heidelberg (2002) Google Scholar
  12. 12.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013) Google Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004) Google Scholar
  14. 14.
    Gordon, S.D., Liu, F.-H., Shi, E.: Constant-round mpc with fairness and guarantee of output delivery. Cryptology ePrint Archive, report 2015/371 (2015)Google Scholar
  15. 15.
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010) Google Scholar
  16. 16.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004) Google Scholar
  17. 17.
    Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press, New York (2012)Google Scholar
  19. 19.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM Press, New York (2004)Google Scholar
  20. 20.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, New York (2005)Google Scholar
  21. 21.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Computer and Electrical Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations