Secure Computation with Minimal Interaction, Revisited

  • Yuval Ishai
  • Ranjit KumaresanEmail author
  • Eyal Kushilevitz
  • Anat Paskin-Cherniavsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9216)


Motivated by the goal of improving the concrete efficiency of secure multiparty computation (MPC), we revisit the question of MPC with only two rounds of interaction. We consider a minimal setting in which parties can communicate over secure point-to-point channels and where no broadcast channel or other form of setup is available.

Katz and Ostrovsky (Crypto 2004) obtained negative results for such protocols with \(n=2\) parties. Ishai et al. (Crypto 2010) showed that if only one party may be corrupted, then \(n \ge 5\) parties can securely compute any function in this setting, with guaranteed output delivery, assuming one-way functions exist. In this work, we complement the above results by presenting positive and negative results for the cases where \(n = 3\) or \(n = 4\) and where there is a single malicious party.

When \(n=3\), we show a 2-round protocol which is secure with “selective abort” against a single malicious party. The protocol makes a black-box use of a pseudorandom generator or alternatively can offer unconditional security for functionalities in \(\mathrm {NC}^1\). The concrete efficiency of this protocol is comparable to the efficiency of secure two-party computation protocols for semi-honest parties based on garbled circuits.

When \(n= 4\) in the setting described above, we show the following:
  • A statistical VSS protocol that has a 1-round sharing phase and 1-round reconstruction phase. This improves over the state-of-the-art result of Patra et al. (Crypto 2009) whose VSS protocol required 2 rounds in the reconstruction phase.

  • A 2-round statistically secure protocol for linear functionalities with guaranteed output delivery. This implies a 2-round 4-party fair coin tossing protocol. We complement this by a negative result, showing that there is a (nonlinear) function for which there is no 2-round statistically secure protocol.

  • A 2-round computationally secure protocol for general functionalities with guaranteed output delivery, under the assumption that injective (one-to-one) one-way functions exist.

  • A 2-round protocol for general functionalities with guaranteed output delivery in the preprocessing model, whose correlated randomness complexity is proportional to the length of the inputs. This protocol makes a black-box use of a pseudorandom generator or alternatively can offer unconditional security for functionalities in \(\mathrm {NC}^1\).

Prior to our work, the feasibility results implied by our positive results were not known to hold even in the stronger MPC model considered by Gennaro et al. (Crypto 2002), where a broadcast channel is available.


Secure multiparty computation Round complexity  Efficiency 


  1. 1.
    Agrawal, S.: Verifiable secret sharing in a total of three rounds. Info. Process. Lett. 112(22), 856–859 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 317–342. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure multi-party computation minimizing online rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 268–286. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Choi, S.G., Katz, J., Malozemoff, A., Zikas, V.: Efficient three-party computation from cut-and-choose. Crypto 2, 513–530 (2014)MathSciNetGoogle Scholar
  9. 9.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC, Annual ACM Symposium on Theory of Computing (STOC), pp. 554–563. ACM Press, May 1994Google Scholar
  12. 12.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consiistency. Info. Process. Lett. 14(4), 183–186 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: 33rd ACM STOC, Annual ACM Symposium on Theory of Computing (STOC), pp. 580–589. ACM Press, July 2001Google Scholar
  15. 15.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J. Cryptol. 18(3), 247–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. 20.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: GLOBECOM, pp. 99–102 (1987)Google Scholar
  21. 21.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  22. 22.
    Katz, J., Koo, C.-Y.: Round-efficient secure computation in point-to-point networks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Paskin-Cherniavsky, A.: Secure computation with minimal interaction. Ph.D. Thesis, Technion (2012)Google Scholar
  24. 24.
    Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of verifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 487–504. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Yuval Ishai
    • 1
  • Ranjit Kumaresan
    • 2
    Email author
  • Eyal Kushilevitz
    • 1
  • Anat Paskin-Cherniavsky
    • 3
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.MIT CSAILCambridgeUSA
  3. 3.Department of Computer ScienceAriel UniversityMelbourneAustralia

Personalised recommendations