Advertisement

Cryptanalysis of the Co-ACD Assumption

  • Pierre-Alain Fouque
  • Moon Sung Lee
  • Tancrède Lepoint
  • Mehdi Tibouchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9215)

Abstract

At ACM-CCS 2014, Cheon, Lee and Seo introduced a new number-theoretic assumption, the Co-Approximate Common Divisor (Co-ACD) assumption, based on which they constructed several cryptographic primitives, including a particularly fast additively homomorphic encryption scheme. For their proposed parameters, they found that their scheme was the “most efficient of those that support an additive homomorphic property”. Unfortunately, it turns out that those parameters, originally aiming at 128-bit security, can be broken in a matter of seconds.

Indeed, this paper presents several lattice-based attacks against the Cheon–Lee–Seo (CLS) homomorphic encryption scheme and of the underlying Co-ACD assumption that are effectively devastating for the proposed constructions. A few known plaintexts are sufficient to decrypt any ciphertext in the symmetric-key CLS scheme, and small messages can even be decrypted without any known plaintext at all. This breaks the security of both the symmetric-key and the public-key variants of CLS encryption as well as the underlying decisional Co-ACD assumption. Moreover, Coppersmith techniques can be used to solve the search variant of the Co-ACD problem and mount a full key recovery on the CLS scheme.

Keywords

Cryptanalysis Lattice reduction Coppersmith theorem Homomorphic encryption Co-ACD problem 

Notes

Acknowledgments

The authors thank Jung Hee Cheon, Paul Kirchner, Changmin Lee, Guénaël Renault, Jae Hong Seo, and Yong Soo Song for helpful discussions. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2012R1A1A2039129).

References

  1. [BCF+14]
    Bi, J., Coron, J.-S., Faugère, J.-C., Nguyen, P.Q., Renault, G., Zeitoun, R.: Rounding and chaining LLL: finding faster small roots of univariate polynomial congruences. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 185–202. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. [Bro01]
    Broughan, K.A.: The gcd-sum function. J. Integer Sequences 4, 01.2.2, 19 (2001)Google Scholar
  3. [CCK+13]
    Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. [CH12]
    Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: ANTS X (2012)Google Scholar
  5. [CLS14]
    Cheon, J.H., Lee, H.T., Seo, J.H.: A new additive homomorphic encryption based on the Co-ACD problem. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS, pp. 287–298. ACM, New York (2014)Google Scholar
  6. [CLT13]
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. [CLT14]
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. [CN11]
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. [CN12]
    Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors: breaking fully-homomorphic-encryption challenges over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 502–519. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. [CNT10]
    Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signatures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. [CNT12]
    Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. [Cop97]
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [DGHV10]
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. [FLLT14]
    Fouque, P.-A., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of the Co-ACD assumption. Cryptology ePrint Archive. Full version of this paper, Report 2014/1024 (2014). http://eprint.iacr.org/
  15. [How01]
    Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 51. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  16. [JL13]
    Joye, M., Libert, B.: Efficient cryptosystems from 2\(^\text{ k }\)-th power residue symbols. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. [LLL82]
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [LT15]
    Lepoint, T., Tibouchi, M.: Cryptanalysis of a (somewhat) additively homomorphic encryption scheme used in PIR. In: WAHC (2015)Google Scholar
  19. [May03]
    May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis, University of Paderborn (2003)Google Scholar
  20. [MR09]
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. [Ngu10]
    Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm, Information Security and Cryptography, pp. 19–69. Springer, Berlin (2010)Google Scholar
  22. [NLV11]
    Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Cachin, C., Ristenpart, T. (eds), ACM CCSW, pp. 113–124, ACM (2011)Google Scholar
  23. [NS97]
    Nguyên, P.Q., Stern, J.: Merkle-hellman revisited: a cryptanalysis of the qu-vanstone cryptosystem based on group factorizations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  24. [NS98a]
    Nguyên, P.Q., Stern, J.: The béguin-quisquater server-aided RSA protocol from crypto 1995 is not secure. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 372–379. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  25. [NS98b]
    Nguyên, P.Q., Stern, J.: Cryptanalysis of a fast public key cryptosystem presented at SAC 1997. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, p. 213. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  26. [NS99]
    Nguyên, P.Q., Stern, J.: The hardness of the hidden subset sum problem and its cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 31. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  27. [NS01]
    Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, p. 146. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  28. [NT12]
    Nguyen, P.Q., Tibouchi, M.: Lattice-based fault attacks on signatures. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography, Information Security and Cryptography, pp. 201–220. Springer, Berlin (2012)CrossRefGoogle Scholar
  29. [Pai99]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  30. [S+14]
    Stein, W. et al.: Sage Mathematics Software (Version 6.4). The Sage Development Team (2014). http://www.sagemath.org
  31. [vdPS13]
    van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 290–303. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Pierre-Alain Fouque
    • 1
  • Moon Sung Lee
    • 2
  • Tancrède Lepoint
    • 3
  • Mehdi Tibouchi
    • 4
  1. 1.Université de Rennes 1 and Institut Universitaire de FranceRennesFrance
  2. 2.Seoul National University (SNU)SeoulSouth Korea
  3. 3.CryptoExpertsParisFrance
  4. 4.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations