Advertisement

Explicit Non-malleable Codes Against Bit-Wise Tampering and Permutations

  • Shashank Agrawal
  • Divya Gupta
  • Hemanta K. Maji
  • Omkant Pandey
  • Manoj Prabhakaran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9215)

Abstract

A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the message contained in a tampered codeword is either the original message, or a completely unrelated one. Although existence of such codes for various rich classes of tampering functions is known, explicit constructions exist only for “compartmentalized” tampering functions: i.e. the codeword is partitioned into a priori fixed blocks and each block can only be tampered independently. The prominent examples of this model are the family of bit-wise independent tampering functions and the split-state model.

In this paper, for the first time we construct explicit non-malleable codes against a natural class of non-compartmentalized tampering functions. We allow the tampering functions to permute the bits of the codeword and (optionally) perturb them by flipping or setting them to 0 or 1. We construct an explicit, efficient non-malleable code for arbitrarily long messages in this model (unconditionally).

We give an application of our construction to non-malleable commitments, as one of the first direct applications of non-malleable codes to computational cryptography. We show that non-malleable string commitments can be “entirely based on” non-malleable bit commitments.

Keywords

Encode Scheme Commitment Scheme Outer Code Efficient Encode Computational Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. STOC (2015, to appear)Google Scholar
  2. 2.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)Google Scholar
  3. 3.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes resistant to permutations and perturbations. Cryptology ePrint Archive, Report 2014/841 (2014). http://eprint.iacr.org/
  4. 4.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015) Google Scholar
  5. 5.
    Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 410–426. Springer, Heidelberg (2007) Google Scholar
  6. 6.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  7. 7.
    Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://eprint.iacr.org/
  8. 8.
    Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: STOC, pp. 306–315 (2014)Google Scholar
  10. 10.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS, pp. 155–168 (2014)Google Scholar
  11. 11.
    Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer, Heidelberg (2011) Google Scholar
  13. 13.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. Cryptology ePrint Archive, Report 2014/324 (2014). http://eprint.iacr.org/
  14. 14.
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008) Google Scholar
  15. 15.
    Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection codes in the constant-error model. Cryptology ePrint Archive, Report 2014/116 (2014). http://eprint.iacr.org/
  16. 16.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC, pp. 542–552 (1991)Google Scholar
  17. 17.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013) Google Scholar
  18. 18.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)Google Scholar
  19. 19.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC, pp. 495–504 (2014)Google Scholar
  22. 22.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008) Google Scholar
  23. 23.
    Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108. Springer, Heidelberg (2010) Google Scholar
  24. 24.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: STOC, pp. 695–704 (2011)Google Scholar
  25. 25.
    Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: FOCS, pp. 51–60 (2012)Google Scholar
  26. 26.
    Guruswami, V., Smith, A.: Codes for computationally simple channels: explicit constructions with optimal rate. In: FOCS, pp. 723–732 (2010)Google Scholar
  27. 27.
    Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008) Google Scholar
  28. 28.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007) Google Scholar
  29. 29.
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: STOC, pp. 705–714 (2011)Google Scholar
  30. 30.
    Lipton, R.J.: A new approach to information theory. In: STACS, pp. 699–708 (1994)Google Scholar
  31. 31.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012) Google Scholar
  32. 32.
    Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 1–16. Springer, Heidelberg (2005) Google Scholar
  33. 33.
    Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)Google Scholar
  34. 34.
    Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 387–398. Springer, Heidelberg (2007) Google Scholar
  35. 35.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Shashank Agrawal
    • 1
  • Divya Gupta
    • 2
  • Hemanta K. Maji
    • 2
    • 4
  • Omkant Pandey
    • 3
  • Manoj Prabhakaran
    • 1
  1. 1.University of Illinois Urbana-ChampaignChampaignUSA
  2. 2.Los Angeles and Center for Encrypted FunctionalitiesUniversity of CaliforniaLos AngelesUSA
  3. 3.University of CaliforniaBerkeleyUSA
  4. 4.Purdue UniversityWest LafayetteUSA

Personalised recommendations