Advertisement

Two Frameworks for Cross-Domain Heuristic and Parameter Selection Using Harmony Search

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 382)

Abstract

Harmony Search is a metaheuristic technique for optimizing problems involving sets of continuous or discrete variables, inspired by musicians searching for harmony between instruments in a performance. Here we investigate two frameworks, using Harmony Search to select a mixture of continuous and discrete variables forming the components of a Memetic Algorithm for cross-domain heuristic search. The first is a single-point based framework which maintains a single solution, updating the harmony memory based on performance from a fixed starting position. The second is a population-based method which co-evolves a set of solutions to a problem alongside a set of harmony vectors. This work examines the behaviour of each framework over thirty problem instances taken from six different, real-world problem domains. The results suggest that population co-evolution performs better in a time-constrained scenario, however both approaches are ultimately constrained by the underlying metaphors.

Keywords

Harmony search Hyper-heuristics Combinatorial optimisation Metaheuristics Memetic algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: New heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  2. 2.
    Al-Betar, M.A., Khader, A.T.: A harmony search algorithm for university course timetabling. Ann. Oper. Res. 194(1), 3–31 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Wang, L., Pan, Q.K., Tasgetiren, M.F.: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert Syst. Appl. 37(12), 7929–7936 (2010)CrossRefGoogle Scholar
  4. 4.
    Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Ser, J.D., Bilbao, M., Salcedo-Sanz, S., Geem, Z.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)CrossRefGoogle Scholar
  5. 5.
    Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classification of hyper-heuristics approaches. In: Handbook of Metaheuristics, 2nd edn., pp. 49–468 (2010)Google Scholar
  7. 7.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)CrossRefGoogle Scholar
  8. 8.
    Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Drake, J.H., Özcan, E., Burke, E.K.: Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun, H., Yang, Chin-Yu., Lin, C.-W., Pan, J.-S., Snasel, V., Abraham, A. (eds.) Genetic and Evolutionary Computing. AISC, vol. 329, pp. 225–234. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Drake, J.H., Hyde, M., Ibrahim, K., Özcan, E.: A genetic programming hyper-heuristic for the multidimensional knapsack problem. Kybernetes 43(9–10), 1500–1511 (2014)Google Scholar
  11. 11.
    Drake, J.H., Kililis, N., Özcan, E.: Generation of VNS components with grammatical evolution for vehicle routing. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 25–36. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    López-Camacho, E., Terashima-Marín, H., Ross, P.: A hyper-heuristic for solving one and two-dimensional bin packing problems. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 257–258 (2011)Google Scholar
  13. 13.
    Kiraz, B., Uyar, A.S., Özcan, E.: Selection hyper-heuristics in dynamic environments. J. Oper. Res. Soc. 64(12), 1753–1769 (2013)CrossRefGoogle Scholar
  14. 14.
    Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003)CrossRefGoogle Scholar
  15. 15.
    Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning – great deluge hyper-heuristic for examination timetabling. International Journal of Applied Metaheuristic Computing 1(1), 39–59 (2010)CrossRefGoogle Scholar
  16. 16.
    Drake, J.H., Özcan, E., Burke, E.K.: A case study of controlling crossover in a selection hyper-heuristic framework using the multidimensional knapsack problem. Evolutionary computation (2015)Google Scholar
  17. 17.
    Fisher, H., Thompson, G.: Probabilistic learning combinations of local job-shop scheduling rules. In: Factory Scheduling Conference, Carnegie Institute of Technology (1961)Google Scholar
  18. 18.
    Gibbs, J., Kendall, G., Özcan, E.: Scheduling english football fixtures over the holiday period using hyper-heuristics. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 496–505. Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Garrido, P., Castro, C.: Stable solving of cvrps using hyperheuristics. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 255–262 (2009)Google Scholar
  20. 20.
    Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. International series in operations research and management science, 457–474 (2003)Google Scholar
  21. 21.
    Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill climbers and mutational heuristics in hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 202–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M., et al.: Hyflex: a benchmark framework for cross-domain heuristic search. In: Evolutionary Computation in Combinatorial Optimization, pp. 136–147 (2012) Google Scholar
  23. 23.
    Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes, A.J., Petrovic, S.: The cross-domain heuristic search challenge – an international research competition. In: Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 631–634. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program. C3P Report, 826 (1989)Google Scholar
  25. 25.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (2006)Google Scholar
  26. 26.
    Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 418–427. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Anwar, K., Khader, A.T., Al-Betar, M.A., Awadallah, M.: Harmony search-based hyper-heuristic for examination timetabling. In: 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), pp. 176–181 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of Nottingham NingboNingboChina
  2. 2.ASAP Research Group, School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations