Advertisement

Physical Processes in the Interstellar Medium

  • Ralf S. KlessenEmail author
  • Simon C. O. Glover
Chapter
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 43)

Abstract

Understanding the physical processes that govern the dynamical behavior of the interstellar medium (ISM) is central to much of modern astronomy and astrophysics. The ISM is the primary galactic repository out of which stars are born and into which they deposit energy, momentum and enriched material as they die. It constitutes the anchor point of the galactic matter cycle, and as such is the key to a consistent picture of galaxy formation and evolution. The dynamics of the ISM determines where and when stars form. Similarly, the properties of the planets and planetary systems around these stars are intimately connected to the properties of their host stars and the details of their formation process.

Notes

Acknowledgments

Writing these lecture notes would have been impossible without the help and input from many collaborators and colleagues. In particular, we want to thank Christian Baczynski, Javier Ballesteros-Paredes, Robi Banerjee, Erik Bertram, Henrik Beuther, Frank Bigiel, Peter Bodenheimer, Ian A. Bonnell, Andreas Burkert, Paul C. Clark, Cornelis P. Dullemond, Edith Falgarone, Christoph Federrath, Philipp Girichidis, Alyssa Goodman, Dimitrios Gouliermis, Fabian Heitsch, Patrick Hennebelle, Thomas Henning, Mark H. Heyer, Philip F. Hopkins, Juan Ibañez Mejia, Eric R. Keto, Lukas Konstandin, Pavel Kroupa, Mark R. Krumholz, Mordecai-Mark Mac Low, Faviola Molina, Volker Ossenkopf, Thomas Peters, Ralph E. Pudritz, Sarah Ragan, Julia Roman-Duval, Daniel Seifried, Dominik R.G. Schleicher, Wolfram Schmidt, Nicola Schneider, Jennifer Schober, Rahul Shetty, Rowan J. Smith, Jürgen Stutzki, Làszlò Szűcs, Enrique Vazquez-Semadeni, Antony P. Whitworth, and Hans Zinnecker for many stimulating and encouraging discussions.

We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) via the SFB 881 The Milky Way System (subprojects B1, B2, B5 and B8), and the SPP (priority program) 1573 Physics of the ISM. We also acknowledge substantial support from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013) via the ERC Advanced Grant STARLIGHT: Formation of the First Stars (project number 339177).

References

  1. Abbott, D. C., The return of mass and energy to the interstellar medium by winds from early-type stars, ApJ, 263, 723 (1982)ADSCrossRefGoogle Scholar
  2. Abel, T., Bryan, G. L., Norman, M. L., The Formation of the First Star in the Universe, Science, 295, 93 (2002)Google Scholar
  3. Abgrall, H., Roueff, E., Drira, I., Total transition probability and spontaneous radiative dissociation of B, C, B\(^{\prime }\) and D states of molecular hydrogen, A&AS, 141, 297 (2000)ADSCrossRefGoogle Scholar
  4. Adams, F. C., Fatuzzo, M., A Theory of the Initial Mass Function for Star Formation in Molecular Clouds, ApJ, 464, 256 (1996)ADSCrossRefGoogle Scholar
  5. Adams, F. C., Myers, P. C., Modes of Multiple Star Formation, ApJ, 553, 744 (2001)ADSCrossRefGoogle Scholar
  6. Adams, S. M., Kochanek, C. S., Beacom, J. F., Vagins, M. R., Stanek, K. Z., Observing the next galactic supernova, ApJ, 778, 164 (2013)ADSCrossRefGoogle Scholar
  7. Agertz, O., Teyssier, R., Moore, B., Disc formation and the origin of clumpy galaxies at high redshift, MNRAS, 397, L64 (2009)ADSCrossRefGoogle Scholar
  8. Aikawa, Y., Wakelam, V., Garrod, R. T., Herbst, E., Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores, ApJ, 674, 984 (2008)ADSCrossRefGoogle Scholar
  9. Albertsson, T., Semenov, D. A., Vasyunin, A. I., Henning, Th., Herbst, E., New Extended Deuterium Fractionation Model: Assessment at Dense ISM Conditions and Sensitivity Analysis, ApJS, 207, 27 (2013)ADSCrossRefGoogle Scholar
  10. Alves, J., Lombardi, M., Lada, C. J., The mass function of dense molecular cores and the origin of the IMF, A&A, 462, L17 (2007)ADSCrossRefGoogle Scholar
  11. Alves, J. F., Lada, C. J., Lada, E. A., Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight, Nature, 409, 159 (2001)ADSCrossRefGoogle Scholar
  12. Alves J., Lombardi M., Lada C. J., 2MASS wide-field extinction maps. V. Corona Australis, A&A, 565, A18 (2014)Google Scholar
  13. Amenomori, M., et al., Anisotropy and Corotation of Galactic Cosmic Rays, Science, 314, 439 (2006)Google Scholar
  14. André, P., Ward-Thompson, D., Barsony, M., From Prestellar Cores to Protostars: the Initial Conditions of Star Formation, in: Protostars and Planets IV, edited by V. Mannings, A. P. Boss, S. S. Russell, p. 59 (2000)Google Scholar
  15. André, P., Belloche, A., Motte, F., Peretto, N., The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations, A&A, 472, 519 (2007)ADSCrossRefGoogle Scholar
  16. Anninos, P., Zhang, Y., Abel, T., Norman, M. L., Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling, New. Astron. 2, 209 (1997)Google Scholar
  17. Appenzeller, I., Mass Loss Rates for Vibrationally Unstable Very Massive Main-sequence Stars, A&A, 9, 216 (1970a)ADSGoogle Scholar
  18. Appenzeller, I., The Evolution of a Vibrationally Unstable Main-sequence Star of 130 M\(_{\odot }\), A&A, 5, 355 (1970b)ADSGoogle Scholar
  19. Appenzeller, I., Theory of vibrational instabilities in luminous early type stars, in: Instabilities in Luminous Early Type Stars, vol. 136 of Astrophysics and Space Science Library, edited by H. J. G. L. M. Lamers C. W. H. de Loore, p. 55 (1987)Google Scholar
  20. Arce, H. G., Borkin, M. A., Goodman, A. A., Pineda, J. E., Halle, M. W., The COMPLETE survey of outflows in Perseus, ApJ, 715, 1170 (2010)ADSCrossRefGoogle Scholar
  21. Arce, H. G., Goodman, A. A., Bow shocks, wiggling jets, and wide-angle winds: A high-resolution study of the entrainment mechanism of the PV Cephei molecular (CO) outflow, ApJ, 575, 928 (2002a)ADSCrossRefGoogle Scholar
  22. Arce, H. G., Goodman, A. A., The great PV Cephei outflow: A case study in outflow-cloud interaction, ApJ, 575, 911 (2002b)ADSCrossRefGoogle Scholar
  23. Arons, J., Max, C. E., Hydromagnetic Waves in Molecular Clouds, ApJ, 196, L77 (1975)ADSCrossRefGoogle Scholar
  24. Atkins, P., Friedman, R., Molecular Quantum Mechanics, 5th Edition. OUP, Oxford (2010)Google Scholar
  25. Audit, E., Hennebelle, P., Thermal condensation in a turbulent atomic hydrogen flow, A&A, 433, 1 (2005)ADSCrossRefGoogle Scholar
  26. Bacmann, A., André, P., Ward-Thompson, D., The Structure of Prestellar Cores as Derived from ISO Observations, in: From Darkness to Light: Origin and Evolution of Young Stellar Clusters, vol. 243 of Astronomical Society of the Pacific Conference Series, edited by T. Montmerle P. André, p. 113 (2001)Google Scholar
  27. Bakes, E. L. O., Tielens, A. G. G. M., The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons, ApJ, 427, 822 (1994)ADSCrossRefGoogle Scholar
  28. Balbus, S. A., Hawley, J. F., Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 70, 1 (1998)ADSCrossRefGoogle Scholar
  29. Ballesteros-Paredes J., Six myths on the virial theorem for interstellar clouds, MNRAS, 372, 443 (2006)ADSCrossRefGoogle Scholar
  30. Ballesteros-Paredes, J., Vázquez-Semadeni, E., Gazol, A., Hartmann, L. W., Heitsch, F., Colín, P., Gravity or turbulence? - II. Evolving column density probability distribution functions in molecular clouds, MNRAS, 416, 1436 (2011)Google Scholar
  31. Ballesteros-Paredes, J., Klessen, R. S., Mac Low, M.-M., Vazquez-Semadeni, E., Molecular Cloud Turbulence and Star Formation, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 63 (2007)Google Scholar
  32. Ballesteros-Paredes, J., Klessen, R. S., Vázquez-Semadeni, E., Dynamic Cores in Hydrostatic Disguise, ApJ, 592, 188 (2003)ADSCrossRefGoogle Scholar
  33. Ballesteros-Paredes, J., Mac Low, M.-M., Physical versus observational properties of clouds in turbulent molecular cloud models, ApJ, 570, 734 (2002)Google Scholar
  34. Bally, J., Devine, D., A parsec-scale ‘superjet’ and quasi-periodic structure in the HH 34 outflow?, ApJ, 428, L65 (1994)ADSCrossRefGoogle Scholar
  35. Bally, J., Devine, D., Alten, V., Sutherland, R. S., New Herbig-Haro flows in l1448 and l1455, ApJ, 478, 603 (1997)ADSCrossRefGoogle Scholar
  36. Bally, J., Reipurth, B., Davis, C. J., Observations of Jets and Outflows from Young Stars, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 215 (2007)Google Scholar
  37. Banerjee, R., Klessen, R. S., Fendt, C., Can protostellar jets drive supersonic turbulence in molecular clouds? ApJ, 668, 1028 (2007)ADSCrossRefGoogle Scholar
  38. Banerjee, S., Kroupa, P., Oh, S., The emergence of super-canonical stars in R136-type starburst clusters, MNRAS, 426, 1416 (2013)ADSCrossRefGoogle Scholar
  39. Banerjee, R., Pudritz, R. E., Anderson, D. W., Supersonic turbulence, filamentary accretion and the rapid assembly of massive stars and discs, MNRAS, 373, 1091 (2006)ADSCrossRefGoogle Scholar
  40. Banerjee, R., Vázquez-Semadeni, E., Hennebelle, P., Klessen, R. S., Clump morphology and evolution in MHD simulations of molecular cloud formation, MNRAS, 398, 1082 (2009)ADSCrossRefGoogle Scholar
  41. Baraffe, I., Heger, A., Woosley, S. E., On the Stability of Very Massive Primordial Stars, ApJ, 550, 890 (2001)ADSCrossRefGoogle Scholar
  42. Bastian, N., Covery, K. R., Meyer, M. R., A Universal Stellar Initial Mass Function? A Critical Look at Variations, ARA&A, 48, 339 (2010)Google Scholar
  43. Bate, M. R., Bonnell, I. A., The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds, MNRAS, 356, 1201 (2005)ADSCrossRefGoogle Scholar
  44. Bate, M. R., Bonnell, I. A., Bromm, V., The formation of a star cluster: predicting the properties of stars and brown dwarfs, MNRAS, 339, 577 (2003)ADSCrossRefGoogle Scholar
  45. Battersby C., Bally J., Jackson J. M., Ginsburg A., Shirley Y. L., Schlingman W., Glenn J., An Infrared Through Radio Study of the Properties and Evolution of IRDC Clumps, ApJ, 721, 222 (2010)ADSCrossRefGoogle Scholar
  46. Baumgardt, H., Klessen, R. S., The role of stellar collisions for the formation of massive stars, MNRAS, 413, 1810 (2011)ADSCrossRefGoogle Scholar
  47. Beaumont, C. N., Williams, J. P., Molecular Rings Around Interstellar Bubbles and the Thickness of Star-Forming Clouds, ApJ, 709, 791 (2010)ADSCrossRefGoogle Scholar
  48. Beaumont, C. N., Offner, S. S. R., Shetty, R., Glover, S. C. O., Goodman, A. A., Quantifying observational projection effects using molecular cloud simulations, ApJ, 777, 173 (2013)ADSCrossRefGoogle Scholar
  49. Bec, J., Khanin, K., Burgers turbulence, Phys. Reports, 447, 1 (2007)MathSciNetADSCrossRefGoogle Scholar
  50. Beltrán, M. T., Cesaroni, R., Codella, C., Testi, L., Furuya, R. S., Olmi, L., Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun, Nature, 443, 427 (2006)ADSCrossRefGoogle Scholar
  51. Benz, W., Smoothed Particle Hydrodynamics: A Review, in: The Numerical Modelling of nonlinear Stellar Pulsations, edited by J. R. Buchler, p. 269, Kluwer Academic Publishers, The Netherlands (1990)Google Scholar
  52. Bergin, E. A., Alves, J., Huard, T., Lada, C. J., N\(_{2}\)O Depletion in a Cold Dark Cloud, ApJ, 570, L101 (2002)Google Scholar
  53. Bergin, E. A., Hartmann, L. W., Raymond, J. C., Ballesteros-Paredes, J., Molecular Cloud Formation behind Shock Waves, ApJ, 612, 921 (2004)ADSCrossRefGoogle Scholar
  54. Bergin, E. A., Melnick, G. J., Stauffer, J. R., Ashby, M. L. N., Chin, G., Erickson, N. R., et al., Implications of Submillimeter Wave Astronomy Satellite Observations for Interstellar Chemistry and Star Formation, ApJ, 539, L129 (2000)ADSCrossRefGoogle Scholar
  55. Bergin, E. A., Tafalla, M., Cold Dark Clouds: The Initial Conditions for Star Formation, ARA&A, 45, 339 (2007)ADSCrossRefGoogle Scholar
  56. Bertram, E., Federrath, C., Banerjee, R., Klessen, R. S., Statistical analysis of the mass-to-flux ratio in turbulent cores: effects of magnetic field reversals and dynamo amplification, MNRAS, 420, 3163 (2012)ADSGoogle Scholar
  57. Bertram, E., Shetty, R., Glover, S. C. O., Klessen, R. S., Roman-Duval, J., Federrath, C., Principal component analysis of molecular clouds: can CO reveal the dynamics?, MNRAS, 440, 465 (2014)ADSCrossRefGoogle Scholar
  58. Bestenlehner J. M., Vink J. S., Gräfener G., Najarro F., Evans C. J., Bastian N., Bonanos A. Z., Bressert E., Crowther P. A., et al., The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136, A&A, 530, L14 (2011)Google Scholar
  59. Beuther, H., Churchwell, E. B., McKee, C. F., Tan, J. C., The Formation of Massive Stars, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 165 (2007)Google Scholar
  60. Beuther, H., Schilke, P., Sridharan, T. K., Menten, K. M., Walmsley, C. M., Wyrowski, F., Massive molecular outflows, A&A, 383, 892 (2002)ADSCrossRefGoogle Scholar
  61. Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., Thornley, M. D., The Star Formation Law on sub-Kiloparsec Scales, AJ, 136, 2846 (2008)ADSCrossRefGoogle Scholar
  62. Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Kramer, C., Rix, H. W., Schruba, A., Schuster, K.-F., Usero, A., Wiesemeyer, H. W., A Constant Molecular Gas Depletion Time in Nearby Disk Galaxies, ApJ, 730, L13 (2011)ADSCrossRefGoogle Scholar
  63. Bird, S., Vogelsberger, M., Sijacki, D., Zaldarriaga, M., Springel, V., Hernquist, L., Moving-mesh cosmology: properties of neutral hydrogen in absorption, MNRAS, 429, 3341 (2013)ADSCrossRefGoogle Scholar
  64. Black, J. H., The physical state of primordial intergalactic clouds, MNRAS, 197, 553 (1981)ADSCrossRefGoogle Scholar
  65. Black, J. H., Energy Budgets of Diffuse Clouds. In: The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds (ASP Conf. Series, Vol. 58), edited by Cutri, R. M., Latter, W. B., p. 355 (1994)Google Scholar
  66. Black, J. H., Dalgarno, A., Models of interstellar clouds. I - The Zeta Ophiuchi cloud, ApJS, 34, 405 (1977)Google Scholar
  67. Blasi, P., Recent Results in Cosmic Ray Physics and Their Interpretation, Brazilian J. Phys., 44, 426 (2014)ADSCrossRefGoogle Scholar
  68. Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N., Rosolowsky, E., Giant Molecular Clouds in Local Group Galaxies, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, 81 (2007)Google Scholar
  69. Blitz, L., Shu, F. H., The Origin and Lifetime of Giant Molecular Cloud Complexes, ApJ, 238, 148 (1980)ADSCrossRefGoogle Scholar
  70. Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, D., Burton, W. B., High-velocity clouds: Building blocks of the local group, ApJ, 514, 818 (1999)ADSCrossRefGoogle Scholar
  71. Bodenheimer, P., Angular Momentum Evolution of Young Stars and Disks, ARA&A, 33, 199 (1995)ADSCrossRefGoogle Scholar
  72. Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., Blitz, L., The Resolved Properties of Extragalactic Giant Molecular Clouds, ApJ, 868, 948 (2008)ADSCrossRefGoogle Scholar
  73. Boldyrev, S., Linde, T., Polyakov, A., Velocity and velocity-difference distributions in burgers turbulence, PRL, 93, 184503 (2004)ADSCrossRefGoogle Scholar
  74. Boldyrev, S. A., Burgers turbulence, intermittency, and nonuniversality, Physics of Plasmas, 5, 1681 (1998)Google Scholar
  75. Bonanos, A. Z., Stanek, K. Z., Udalski, A., Wyrzykowski, L., Żebruń, K., Kubiak, M., Szymański, M. K., Szewczyk, O., Pietrzyński, G., Soszyński, I., WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System, ApJ, 611, L33 (2004)ADSCrossRefGoogle Scholar
  76. Bond, J. R., Cole, S., Efstathiou, G., Kaiser, N., Excursion set mass functions for hierarchical Gaussian fluctuations, ApJ, 379, 440 (1991)ADSCrossRefGoogle Scholar
  77. Bondi, H., On spherically symmetrical accretion, MNRAS, 112, 195 (1952)MathSciNetADSCrossRefGoogle Scholar
  78. Bonnell, I. A., Bate, M. R., Accretion in stellar clusters and the collisional formation of massive stars, MNRAS, 336, 659 (2002)ADSCrossRefGoogle Scholar
  79. Bonnell, I. A., Bate, M. R., Star formation through gravitational collapse and competitive accretion, MNRAS, 370, 488 (2006)ADSCrossRefGoogle Scholar
  80. Bonnell, I. A., Bate, M. R., Clarke, C. J., Pringle, J. E., Competitive accretion in embedded stellar clusters, MNRAS, 323, 785 (2001a)ADSCrossRefGoogle Scholar
  81. Bonnell, I. A., Clarke, C. J., Bate, M. R., Pringle, J. E., Accretion in stellar clusters and the initial mass function, MNRAS, 324, 573 (2001b)ADSCrossRefGoogle Scholar
  82. Bonnell, I. A., Bate, M. R., Zinnecker, H., On the formation of massive stars, MNRAS, 298, 93 (1998)ADSCrossRefGoogle Scholar
  83. Bonnell, I. A., Clark, P., Bate, M. R., Gravitational fragmentation and the formation of brown dwarfs in stellar clusters, MNRAS, 389, 1556 (2008)ADSCrossRefGoogle Scholar
  84. Bonnell, I. A., Clarke, C. J., Bate, M. R., The Jeans mass and the origin of the knee in the IMF, MNRAS, 368, 1296 (2006)ADSCrossRefGoogle Scholar
  85. Bonnell, I. A., Vine, S. G., Bate, M. R., Massive star formation: nurture, not nature, MNRAS, 349, 735 (2004)ADSCrossRefGoogle Scholar
  86. Bonnor, W. B., Boyle’s Law and gravitational instability, MNRAS, 116, 351 (1956)MathSciNetADSCrossRefzbMATHGoogle Scholar
  87. Bontemps, S., et al., ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster, A&A, 372, 173 (2001)ADSCrossRefGoogle Scholar
  88. Bontemps, S., Andre, P., Terebey, S., Cabrit, S., Evolution of outflow activity around low-mass embedded young stellar objects, A&A, 311, 858 (1996)ADSGoogle Scholar
  89. Borissova J., Georgiev L., Hanson M. M., Clarke J. R. A., Kurtev R., Ivanov V. D., Penaloza F., Hillier D. J., Zsargó J., et al., Obscured clusters. IV. The most massive stars in [DBS2003] 179, A&A, 546, A110 (2012)Google Scholar
  90. Bourke, T. L., Myers, P. C., Robinson, G., Hyland, A. R., New OH Zeeman Measurements of Magnetic Field Strengths in Molecular Clouds, ApJ, 554, 916 (2001)ADSCrossRefGoogle Scholar
  91. Brandl, B., Brandner, W., Eisenhauer, F., Moffat, A. F. J., Palla, F., Zinnecker, H., Low-mass stars in the massive H\(_{{{\rm II}}}\) region NGC 3603 Deep NIR imaging with ANTU/ISAAC, A&A, 352, L69 (1999)Google Scholar
  92. Braun, R., Thilker, D. A., The WSRT wide-field H\(_{{{\rm I}}}\) survey. II. local group features, A&A, 417, 421 (2004)Google Scholar
  93. Bromm, V., Yoshida, N., Hernquist, L., McKee, C. F., The formation of the first stars and galaxies, Nature, 459, 49 (2009)ADSCrossRefGoogle Scholar
  94. Bronstein, I. N., Semendjajew, K. A., Taschenbuch der Mathematik, Verlag Harri Deutsch, Thun & Frankfurt a. Main (1987)Google Scholar
  95. Brunt, C. M., Large-scale turbulence in molecular clouds, ApJ, 583, 280 (2003)ADSCrossRefGoogle Scholar
  96. Brunt, C. M., Federrath, C., Price, D. J., A method for reconstructing the PDF of a 3D turbulent density field from 2D observations, MNRAS, 405, L56 (2010)ADSCrossRefGoogle Scholar
  97. Brunt, C. M., Heyer, M. H., Mac Low, M., Turbulent driving scales in molecular clouds, A&A, 504, 883 (2009)Google Scholar
  98. Burgers, J. M., Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion., Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Natuurkunde, 17, 1 (1939)Google Scholar
  99. Burke, J. R., Hollenbach, D. J., The gas-grain interaction in the interstellar medium - Thermal accommodation and trapping, ApJ, 265, 223 (1983)ADSCrossRefGoogle Scholar
  100. Burkert, A., Hartmann, L., Collapse and Fragmentation in Finite Sheets, ApJ, 616, 288 (2004)ADSCrossRefGoogle Scholar
  101. Burkert, A., Hartmann, L., The Dependence of Star Formation Efficiency on Gas Surface Density, ApJ, 773, 48 (2013)ADSCrossRefGoogle Scholar
  102. Burrows, A., Hubbard, W. B., Lunine, J. I., Liebert, J., The theory of brown dwarfs and extrasolar giant planets, Reviews of Modern Physics, 73, 719 (2001)ADSCrossRefGoogle Scholar
  103. Burton, M. G., Hollenbach, D. J., Tielens, A. G. G. M., Line emission from clumpy photodissociation regions, ApJ, 365, 620 (1990)ADSCrossRefGoogle Scholar
  104. Caballero, J. A., Dynamical parallax of \(\sigma \) Ori AB: mass, distance and age, MNRAS, 383, 750 (2008)ADSCrossRefGoogle Scholar
  105. Caldú-Primo, A., Schruba, A., Walter, F., Leroy, A., Sandstrom, K., de Blok, W. J. G., Ianjamasimanana, R., Mogotsi, K. M., A high-dispersion molecular gas component in nearby galaxies, AJ, 146, 150 (2013)ADSCrossRefGoogle Scholar
  106. Camenzind, M., Magnetized Disk-Winds and the Origin of Bipolar Outflows., in: Reviews in Modern Astronomy, edited by G. Klare, p. 234 (1990)Google Scholar
  107. Cardelli, J. A., Meyer, D. M., Jura, M., Savage, B. D., The abundance of interstellar carbon, ApJ, 467, 334 (1996)ADSCrossRefGoogle Scholar
  108. Carpenter, J. M., Meyer, M. R., Dougados, C., Strom, S. E., Hillenbrand, L. A., Properties of the Monoceros R2 Stellar Cluster, AJ, 114, 198 (1997)ADSCrossRefGoogle Scholar
  109. Carroll, J. J., Frank, A., Blackman, E. G., Isotropically driven versus outflow driven turbulence: Observational consequences for molecular clouds, ApJ, 722, 145 (2010)ADSCrossRefGoogle Scholar
  110. Caselli, P., Walmsley, C. M., Terzieva, R., Herbst, E., The Ionization Fraction in Dense Cloud Cores, ApJ, 499, 234 (1998)ADSCrossRefGoogle Scholar
  111. Casoli, F., Combes, F., Can giant molecular clouds form in spiral arms?, A&A, 110, 287 (1982)ADSGoogle Scholar
  112. Casuso, E., Beckman, J. E., The K-dwarf problem and the time-dependence of gaseous accretion to the galactic disc, A&A, 419, 181 (2004)ADSCrossRefGoogle Scholar
  113. Cen, R., A hydrodynamic approach to cosmology - Methodology, ApJS, 78, 341 (1992)ADSCrossRefGoogle Scholar
  114. Cen, R., Fang, T., Where Are the Baryons? III. Nonequilibrium Effects and Observables, ApJ, 650, 573 (2006)Google Scholar
  115. Cernicharo, J., The Physical Conditions of Low Mass Star Forming Regions, in: NATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, p. 287 (1991)Google Scholar
  116. Ceverino, D., Dekel, A., Bournaud, F., High-redshift clumpy disks and bulges in cosmological simulations, MNRAS, 404, 2151 (2010)ADSGoogle Scholar
  117. Chabrier, G., Galactic Stellar and Substellar Initial Mass Function, PASP, 115, 763 (2003a)ADSCrossRefGoogle Scholar
  118. Chabrier G., The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations, ApJ, 586, L133 (2003b)ADSCrossRefGoogle Scholar
  119. Chabrier G., The Initial Mass Function: from Salpeter 1955 to 2005, in The Initial Mass Function 50 Years Later, eds. E. Corbelli and F. Palla, Astrophys. Space Sc. Lib., 327, 41 (2005)Google Scholar
  120. Chakraborty, N., Fields, B. D., Inverse-Compton Contribution to the Star-forming Extragalactic Gamma-Ray Background, ApJ, 773, 104 (2013)ADSCrossRefGoogle Scholar
  121. Chabrier, G., Hennebelle, P., Star Formation: Statistical Measure of the Correlation between the Prestellar Core Mass Function and the Stellar Initial Mass Function, ApJ, 725, L79 (2010)ADSCrossRefGoogle Scholar
  122. Chandrasekhar S., The Gravitational Instability of an Infinite Homogeneous Turbulent Medium, Proc. R. Soc. London A, 210, 26 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  123. Chiappini, C., Renda, A., Matteucci, F., Evolution of deuterium, \(^3\)He in the galaxy, A&A, 395, 789 (2002)Google Scholar
  124. Chini, R., Hoffmeister, V., Kimeswenger, S., Nielbock, M., Nürnberger, D., Schmidtobreick, L., Sterzik, M., The formation of a massive protostar through the disk accretion of gas, Nature, 429, 155 (2004)ADSCrossRefGoogle Scholar
  125. Chini, R., Hoffmeister, V. H., Nielbock, M., Scheyda, C. M., Steinacker, J., Siebenmorgen, R., Nürnberger, D., A Remnant Disk around a Young Massive Star, ApJ, 645, L61 (2006)ADSCrossRefGoogle Scholar
  126. Chira R.-A., Smith R. J., Klessen R. S., Stutz A. M., Shetty R., Line Profiles of Cores within Clusters. III. What is the most reliable tracer of core collapse in dense clusters? MNRAS, 444, 874 (2014)ADSCrossRefGoogle Scholar
  127. Cho, W., Kim, J., Enhanced core formation rate in a turbulent cloud by self-gravity, MNRAS, 410, L8 (2011)ADSCrossRefGoogle Scholar
  128. Cho J., Lazarian A., Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications, MNRAS, 345, 325 (2003)ADSCrossRefGoogle Scholar
  129. Chokshi, A., Tielens, A. G. G. M., Werner, M. W., Castelaz, M. W., C\(_{{{\rm II}}}\) 158 micron and O i 63 micron observations of NGC 7023 - A model for its photodissociation region, ApJ, 334, 803 (1988)Google Scholar
  130. Christensen, C., Quinn, T., Governato, F., Stilp, A., Shen, S., Wadsley, J., Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation, MNRAS, 425, 3058 (2012)ADSCrossRefGoogle Scholar
  131. Clark, P. C., Bonnell, I. A., Clumpy shocks and the clump mass function, MNRAS, 368, 1787 (2006)ADSCrossRefGoogle Scholar
  132. Clark, P. C., Glover, S. C. O., On column density thresholds and the star formation rate, MNRAS, 444, 2396 (2014)ADSCrossRefGoogle Scholar
  133. Clark, P. C., Glover, S. C. O., Klessen, R. S., TreeCol: a novel approach to estimating column densities in astrophysical simulations, MNRAS, 420, 745 (2012a)ADSCrossRefGoogle Scholar
  134. Clark, P. C., Glover, S. C. O., Klessen, R. S., Bonnell, I. A., How long does it take to form a molecular cloud? MNRAS, 424, 2599 (2012b)ADSCrossRefGoogle Scholar
  135. Clark, P. C., Glover, S. C. O., Ragan, S. E., Shetty, R., Klessen, R.S., On the Temperature Structure of the Galactic Center Cloud G0.253+0.016, ApJ, 768, L34 (2013)Google Scholar
  136. Clark, P. C., Glover, S. C. O., Smith, R. J., Greif, T. H., Klessen, R. S., Bromm, V., The Formation and Fragmentation of Disks Around Primordial Protostars, Science, 331, 1040 (2011)ADSCrossRefGoogle Scholar
  137. Clark, P. C., Klessen, R. S., Bonnell, I. A., Clump lifetimes and the initial mass function, MNRAS, 379, 57 (2007)ADSCrossRefGoogle Scholar
  138. Clarke, C. J., Bromm, V., The characteristic stellar mass as a function of redshift, MNRAS, 343, 1224 (2003)ADSCrossRefGoogle Scholar
  139. Collins, D. C., Padoan, P., Norman, M. L., Xu, H., Mass and Magnetic Distributions in Self-gravitating Super-Alfvénic Turbulence with Adaptive Mesh Refinement, ApJ, 731, 59 (2011)ADSCrossRefGoogle Scholar
  140. Combes, F., Distribution of CO in the Milky Way, ARA&A, 29, 195 (1991)ADSCrossRefGoogle Scholar
  141. Commerçon B., Hennebelle P., Henning T., Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition, ApJ, 742, L9 (2011)ADSCrossRefGoogle Scholar
  142. Congiu, E., Matar, E., Kristensen, L. E., Dulieu, F., Lemaire, J. L., Laboratory evidence for the non-detection of excited nascent H\(_2\) in dark clouds, MNRAS, 397, L96 (2009)ADSCrossRefGoogle Scholar
  143. Cooke, R. J., Pettini, M., Jorgenson, R. A., Murphy, M. T., Steidel, C. C., Precision Measures of the Primordial Abundance of Deuterium, ApJ, 781, 31 (2014)ADSCrossRefGoogle Scholar
  144. Cowie, L. L., Songaila, A., High-resolution optical and ultraviolet absorption-line studies of interstellar gas, ARA&A, 24, 499 (1986)ADSCrossRefGoogle Scholar
  145. Crowther, P. A., Schurr, O., Mirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., Kassim, H. A., The emergence of super-canonical stars in R136-type starburst clusters, MNRAS, 408, 731 (2010)ADSCrossRefGoogle Scholar
  146. Crutcher, R., Heiles, C., Troland, T., Observations of Interstellar Magnetic Fields, in: Turbulence and Magnetic Fields in Astrophysics, vol. 614 of Lecture Notes in Physics, Berlin Springer Verlag, edited by E. Falgarone, T. Passot, p. 155 (2003)Google Scholar
  147. Crutcher, R. M., Magnetic Fields in Molecular Clouds: Observations Confront Theory, ApJ, 520, 706 (1999)ADSCrossRefGoogle Scholar
  148. Crutcher, R. M., The Role of Magnetic Fields in Star Formation, in: http://www.mpia-hd.mpg.de/homes/stein/EPoS/Onlinematerial/crutcher.pdf.gz, edited by J. Steinacker, A. Bacmann (2010)
  149. Crutcher, R. M., Hakobian, N., Troland, T. H., Testing Magnetic Star Formation Theory, ApJ, 692, 844 (2009)ADSCrossRefGoogle Scholar
  150. Crutcher, R. M., Hakobian, N., Troland, T. H., Self-consistent analysis of OH Zeeman observations, MNRAS, 402, L64 (2010a)ADSCrossRefGoogle Scholar
  151. Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., Troland, T. H., Magnetic Fields in Interstellar Clouds from Zeeman Observations: Inference of Total Field Strengths by Bayesian Analysis, ApJ, 725, 466 (2010b)ADSCrossRefGoogle Scholar
  152. Crutcher, R. M., Troland, T. H., OH Zeeman Measurement of the Magnetic Field in the L1544 Core, ApJ, 537, L139 (2000)ADSCrossRefGoogle Scholar
  153. Crutcher, R. M., Troland, T. H., Lazareff, B., Paubert, G., Kazès, I., Detection of the CN Zeeman Effect in Molecular Clouds, ApJ, 514, L121 (1999)ADSCrossRefGoogle Scholar
  154. Cunningham, A. J., Frank, A., Carroll, J., Blackman, E. G., Quillen, A. C., Protostellar Outflow Evolution in Turbulent Environments, ApJ, 692, 816 (2008)ADSCrossRefGoogle Scholar
  155. Dale, J. E., Bonnell, I., Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation, MNRAS, 414, 321 (2011)ADSCrossRefGoogle Scholar
  156. Dale, J. E., Bonnell, I. A., Clarke, C. J., Bate, M. R., Photoionizing feedback in star cluster formation, MNRAS, 358, 291 (2005)ADSCrossRefGoogle Scholar
  157. Dalgarno, A., Black, J. H., Molecule formation in the interstellar gas, Rep. Prog. Phys., 39, 573 (1976)Google Scholar
  158. Dalgarno, A., Yan, M., Liu, W., Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium, ApJS, 125, 237 (1999)ADSCrossRefGoogle Scholar
  159. Dame, T. M., Hartmann, D., Thaddeus, P., The Milky Way in Molecular Clouds: A New Complete CO Survey, ApJ, 547, 792 (2001)ADSCrossRefGoogle Scholar
  160. Davies, B., Lumsden, S. L., Hoare, M. G., Oudmaijer, R. D., de Wit, W.-J., The circumstellar disc, envelope and bipolar outflow of the massive young stellar object W33A, MNRAS, 402, 1504 (2010)ADSCrossRefGoogle Scholar
  161. Dawson, J. R., McClure-Griffiths, N. M., Wong, T., Dickey, J. M., Hughes, A., Fukui, Y., Kawamura, A., Supergiant Shells and Molecular Cloud Formation in the Large Magellanic Cloud, ApJ, 763, 56 (2013)ADSCrossRefGoogle Scholar
  162. de Avillez, M. A., Breitschwerdt, D., Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction, A&A, 425, 899 (2004)Google Scholar
  163. de Avillez, M. A., Breitschwerdt, D., Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: Effect of the magnetic field, A&A, 436, 585 (2005)Google Scholar
  164. de Avillez, M. A., Breitschwerdt, D., The Generation and Dissipation of Interstellar Turbulence: Results from Large-Scale High-Resolution Simulations, ApJ, 665, L35 (2007)ADSCrossRefGoogle Scholar
  165. de Avillez, M. A., Breitschwerdt, D., The Diagnostic O vi Absorption Line in Diffuse Plasmas: Comparison of Non-equilibrium Ionization Structure Simulations to FUSE Data, ApJ, 761, L19 (2012)ADSCrossRefGoogle Scholar
  166. de Avillez, M. A., Mac Low, M., Mixing Timescales in a Supernova-driven Interstellar Medium, ApJ, 581, 1047 (2002)Google Scholar
  167. Deharveng, L., Peña, M, Caplan, J., Costero, R., Oxygen and helium abundances in Galactic H\(_{{{\rm II}}}\) regions - II. Abundance gradients, MNRAS, 311, 329 (2000)Google Scholar
  168. Deharveng, L., Schuller, F., Anderson, L. D., Zavagno, A., Wyrowski, F., Menten, K. M., Bronfman, L., Testi, L., Walmsley, C. M., Wienen, M., A gallery of bubbles. The nature of the bubbles observed by Spitzer and what ATLASGAL tells us about the surrounding neutral material, A&A, 523, 6 (2010)ADSGoogle Scholar
  169. Désert, F.-X., Macías-Pérez, J.-F., Mayet, F., Giardino, G., Renault, C., Aumont, J., et al., Submillimetre point sources from the Archeops experiment: very cold clumps in the Galactic plane, A&A, 481, 411 (2008)ADSCrossRefGoogle Scholar
  170. Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goerdt, T., Mumcuoglu, M., Neistein, E., Pichon, C., Teyssier, R., Zinger, E., Cold streams in early massive hot haloes as the main mode of galaxy formation, Nature, 457, 451 (2009)ADSCrossRefGoogle Scholar
  171. De Pree C. G., Peters T., Mac Low M.-M., Wilner D. J., Goss W. M., Galván-Madrid R., Keto E. R., Klessen R. S., Monsrud A., et al., Flickering of 1.3 cm Sources in Sgr B2: Toward a Solution to the Ultracompact H\(_{{{\rm II}}}\) Region Lifetime Problem, ApJ, 781, L36 (2014)Google Scholar
  172. de Wit, W. J., Testi, L., Palla, F., Vanzi, L., Zinnecker, H., The origin of massive O-type field stars. I. A search for clusters, A&A, 425, 937 (2004)Google Scholar
  173. Dib, S., Burkert, A. On the Origin of the H\(_{{{\rm I}}}\) Holes in the Interstellar Medium of Dwarf Irregular Galaxies, ApJ, 630, 238 (2005)Google Scholar
  174. Dickey, J. M., Lockman, F. J., H\(_{{\rm I}}\) in the galaxy, ARA&A, 28, 215 (1990)Google Scholar
  175. Di Francesco, J., Evans, II, N. J., Caselli, P., Myers, P. C., Shirley, Y., Aikawa, Y., Tafalla, M., An Observational Perspective of Low-Mass Dense Cores I: Internal Physical and Chemical Properties, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 17 (2007)Google Scholar
  176. Dobbs, C. L., Bonnell, I. A., Simulations of spiral galaxies with an active potential: molecular cloud formation and gas dynamics, MNRAS, 385, 1893 (2008)ADSCrossRefGoogle Scholar
  177. Dobbs, C. L., GMC formation by agglomeration and self gravity, MNRAS, 391, 844 (2008)ADSCrossRefGoogle Scholar
  178. Dobbs, C. L., Bonnell, I. A., Clark, P. C., Centrally condensed turbulent cores: massive stars or fragmentation?, MNRAS, 360, 2 (2005)ADSCrossRefGoogle Scholar
  179. Dobbs, C. L., Glover, S. C. O., Clark, P. C., Klessen, R. S., The ISM in spiral galaxies: can cooling in spiral shocks produce molecular clouds? MNRAS, 389, 1097 (2008)ADSCrossRefGoogle Scholar
  180. Dobbs, C. L., Krumholz, M. R., Ballesteros-Paredes, J., Bolatto, A. D., Fukui, Y., Heyer, M., Mac Low, M.-M., Ostriker, E. C., Vázquez-Semadeni, E., Formation of Molecular Clouds and Global Conditions for Star Formation. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 3, (2014)Google Scholar
  181. Dobbs, C. L., Pringle, J. E., Burkert, A., Giant molecular clouds: what are they made from, and how do they get there?, MNRAS, 425, 2157 (2012)ADSCrossRefGoogle Scholar
  182. Dopcke, G., Glover, S. C. O., Clark, P. C., Klessen, R. S., On the Initial Mass Function of Low-metallicity Stars: The Importance of Dust Cooling, ApJ, 766, 103 (2013)ADSCrossRefGoogle Scholar
  183. Doran E. I., Crowther P. A., de Koter A., Evans C. J., McEvoy C., Walborn N. R., Bastian N., Bestenlehner J. M., Gräfener G., et al., The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus, A&A, 558, A134 (2013)Google Scholar
  184. Draine, B. T., Photoelectric heating of interstellar gas, ApJS, 36, 595 (1978)ADSCrossRefGoogle Scholar
  185. Draine, B. T., Physics of the Interstellar and Intergalactic Medium, Princeton University Press (2011)Google Scholar
  186. Draine, B. T., Bertoldi, F., Structure of Stationary Photodissociation Fronts, ApJ, 468, 269 (1996)ADSCrossRefGoogle Scholar
  187. Draine, B. T., Li, A., Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era, ApJ, 657, 810 (2007)Google Scholar
  188. Draine, B. T., Lee, H. M., Optical properties of interstellar graphite and silicate grains, ApJ, 285, 89 (1984)ADSCrossRefGoogle Scholar
  189. Draine, B. T., Sutin, B., Collisional charging of interstellar grains, ApJ, 320, 803 (1987)ADSCrossRefGoogle Scholar
  190. Dupac, X., Bernard, J.-P., Boudet, N., Giard, M., Lamarre, J.-M., Mény, C., et al., Inverse temperature dependence of the dust submillimeter spectral index, A&A, 404, L11 (2003)ADSCrossRefGoogle Scholar
  191. Dziourkevitch, N., Elstner, D., Rüdiger, G., Interstellar turbulence driven by the magnetorotational instability, A&A, 423, L29 (2004)ADSCrossRefGoogle Scholar
  192. Ebert, R., Über die Verdichtung von H\(_{{\rm I}}\)-Gebieten. Mit 5 Textabbildungen, Z. Astrophys., 37, 217 (1955)Google Scholar
  193. Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., Maeder, A., Grids of stellar models with rotation. I. Models from 0.8 to 120 M\(_{\odot }\) at solar metallicity (Z = 0.014), A&A, 537, 146 (2012)Google Scholar
  194. Elmegreen, B. G., Elmegreen, D. M., H\(_{{\rm I}}\) superclouds in the inner Galaxy, ApJ, 320, 182 (1987)Google Scholar
  195. Elmegreen, B. G., The H to H\(_2\) transition in galaxies - Totally molecular galaxies, ApJ, 411, 170 (1993)ADSCrossRefGoogle Scholar
  196. Elmegreen, B. G., Falgarone E., A Fractal Origin for the Mass Spectrum of Interstellar Clouds, ApJ, 471, 816 (1996)ADSCrossRefGoogle Scholar
  197. Elmegreen, B. G., Intercloud Structure in a Turbulent Fractal Interstellar Medium, ApJ, 477, 196 (1997a)ADSCrossRefGoogle Scholar
  198. Elmegreen, B. G., The Initial Stellar Mass Function from Random Sampling in a Turbulent Fractal Cloud, ApJ, 486, 944 (1997b)ADSCrossRefGoogle Scholar
  199. Elmegreen, B. G., The Stellar Initial Mass Function from Random Sampling in Hierarchical Clouds. II. Statistical Fluctuations and a Mass Dependence for Starbirth Positions and Times, ApJ, 515, 323 (1999)Google Scholar
  200. Elmegreen, B. G., Two stellar mass functions combined into one by the random sampling model of the initial mass function, MNRAS, 311, L5 (2000a)ADSCrossRefGoogle Scholar
  201. Elmegreen, B. G., Star Formation in a Crossing Time, ApJ, 530, 277 (2000b)ADSCrossRefGoogle Scholar
  202. Elmegreen, B. G., A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes, ApJ, 564, 773 (2002a)Google Scholar
  203. Elmegreen, B. G., Star Formation from Galaxies to Globules, ApJ, 577, 206 (2002b)ADSCrossRefGoogle Scholar
  204. Elmegreen, B. G., On the Rapid Collapse and Evolution of Molecular Clouds, ApJ, 668, 1064 (2007)ADSCrossRefGoogle Scholar
  205. Elmegreen, B. G., Gravitational Instabilities in Two-component Galaxy Disks with Gas Dissipation, ApJ, 737, 10 (2011)ADSCrossRefGoogle Scholar
  206. Elmegreen, B. G., Burkert, A., Accretion-Driven Turbulence and the Transition to Global Instability in Young Galaxy Disks, ApJ, 712, 294 (2010)ADSCrossRefGoogle Scholar
  207. Elmegreen, B. G., Klessen, R. S., Wilson, C. D., On the Constancy of the Characteristic Mass of Young Stars, ApJ, 681, 365 (2008)ADSCrossRefGoogle Scholar
  208. Elmegreen, B. G., Lada, C. J., Sequential formation of subgroups in OB associations, ApJ, 214, 725 (1977)ADSCrossRefGoogle Scholar
  209. Elmegreen, B. G., Scalo, J., Interstellar Turbulence I: Observations and Processes, ARA&A, 42, 211 (2004)ADSCrossRefGoogle Scholar
  210. Enoch, M. L., Evans, N. J., Sargent, A. I., Glenn, J., Rosolowsky, E., Myers, P., The Mass Distribution and Lifetime of Prestellar Cores in Perseus, Serpens, and Ophiuchus, ApJ, 684, 1240 (2008)CrossRefGoogle Scholar
  211. Evans, N. J., Physical Conditions in Regions of Star Formation, ARA&A, 37, 311 (1999)ADSCrossRefGoogle Scholar
  212. Evans, N. J., Heiderman, A., Vutisalchavakul, N., Star Formation Relations in Nearby Molecular Clouds, ApJ, 782, 114 (2014)ADSCrossRefGoogle Scholar
  213. Falgarone, E., Pineau des Forêts, G., Roueff, E., Chemical signatures of the intermittency of turbulence in low density interstellar clouds, A&A, 300, 870 (1995)Google Scholar
  214. Falgarone, E., Pety, J., Hily-Blant, P., Intermittency of interstellar turbulence: extreme velocity-shears and CO emission on milliparsec scale, A&A, 507, 355 (2009)ADSCrossRefGoogle Scholar
  215. Fatuzzo, M., Adams, F. C., Enhancement of Ambpolar Diffusion Rates through Field Fluctuations, ApJ, 570, 210 (2002)ADSCrossRefGoogle Scholar
  216. Faucher-Giguère, C.-A., Quataert, E., Hopkins, P., Feedback-regulated star formation in molecular clouds and galactic discs, MNRAS, 433, 1970 (2013)ADSCrossRefGoogle Scholar
  217. Federrath, C., The origin of physical variations in the star formation law, MNRAS, 463, 3167 (2013)Google Scholar
  218. Federrath, C., Klessen, R. S., The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations, ApJ, 761, 156 (2012)Google Scholar
  219. Federrath, C., Klessen, R. S., On the Star Formation Efficiency of Turbulent Magnetized Clouds, ApJ, 763, 51 (2013)ADSCrossRefGoogle Scholar
  220. Federrath, C., Klessen, R. S., Schmidt, W., The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing, ApJ, 688, L79 (2008)ADSCrossRefGoogle Scholar
  221. Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., Mac Low, M.-M., Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing, A&A, 512, A81 (2010)Google Scholar
  222. Federrath, C., Schrön, M., Banerjee, R., Klessen, R. S., Modeling Jet and Outflow Feedback during Star Cluster Formation, ApJ, 790, 128 (2014)Google Scholar
  223. Fendt, C., Camenzind, M., On collimated stellar jet magnetospheres. II. dynamical structure of collimating wind flows, A&A, 313, 591 (1996)Google Scholar
  224. Feng, Y., Krumholz, M. R., Early turbulent mixing as the origin of chemical homogeneity in open star clusters, Nature, 513, 523 (2014)ADSCrossRefGoogle Scholar
  225. Ferreira, J., Magnetically-driven jets from Keplerian accretion discs, A&A, 319, 340 (1997)ADSGoogle Scholar
  226. Ferriére, K. M., The interstellar environment of our galaxy, Rev. Mod. Phys., 73, 1031 (2001)ADSCrossRefGoogle Scholar
  227. Ferrière, K., Gillard, W., Jean, P., Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy, A&A, 467, 611 (2007)ADSCrossRefGoogle Scholar
  228. Fich, M., Tremaine, S., The mass of the galaxy, ARA&A, 29, 409 (1991)ADSCrossRefGoogle Scholar
  229. Field, G. B., Thermal Instability, ApJ, 142, 531 (1965)ADSCrossRefGoogle Scholar
  230. Field, G. B., Blackman, E. G., Keto, E. R., A model of cloud fragmentation, MNRAS, 385, 181 (2008)ADSCrossRefGoogle Scholar
  231. Field, G. B., Goldsmith, D. W., Habing, H. J., Cosmic-Ray Heating of the Interstellar Gas, ApJ, 155, L149 (1969)ADSCrossRefGoogle Scholar
  232. Field, G. B., A Statistical Model of the Formation of Stars and Interstellar Clouds, ApJ, 142, 568 (1965)ADSCrossRefGoogle Scholar
  233. Figer, D. F., An upper limit to the masses of stars, Nature, 434, 192 (2005)ADSCrossRefGoogle Scholar
  234. Fixsen, D. J., Mather, J. C., The Spectral Results of the Far-Infrared Absolute Spectrophotometer Instrument on COBE, ApJ, 581, 817 (2002)ADSCrossRefGoogle Scholar
  235. Flower, D. R., The rotational excitation of CO by H\(_2\), J. Phys. B, 34, 2731 (2001)ADSCrossRefGoogle Scholar
  236. Flower, D. R., Roueff, E., Rovibrational relaxation in collisions between H\(_{2}\), J. Phys. B, 31, 2935 (1998)ADSCrossRefGoogle Scholar
  237. Flower, D. R., Roueff, E., Rovibrational relaxation in collisions between H\(_2\) molecules: II. Influence of the rotational state of the perturber, J. Phys. B, 32, 3399 (1999a)ADSCrossRefGoogle Scholar
  238. Flower, D. R., Roueff, E., Rovibrational excitation of HD in collisions with atomic and molecular hydrogen, MNRAS, 309, 833 (1999b)ADSCrossRefGoogle Scholar
  239. Flower, D. R., Roueff, E., Zeippen, C. J., Rovibrational excitation of H\(_{2}\) molecules by He atoms, J. Phys. B, 31, 1105 (1998)ADSCrossRefGoogle Scholar
  240. Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., Cabrit, S., The contributions of J-type shocks to the H\(_2\) emission from molecular outflow sources, MNRAS, 341, 70 (2003)ADSCrossRefGoogle Scholar
  241. Frank, A., Ray, T. P., Cabrit, S., Hartigan, P., Arce, H. G., Bacciotti, F., Bally, J., Benisty, M., Eislöffel, J., Güdel, M., Lebedev, S., Nisini, B., Raga, A., Jets and Outflows From Star to Cloud: Observations Confront Theory. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 451, (2014)Google Scholar
  242. Frerking, M. A., Keene, J., Blake, G. A., Phillips, T. G., The abundances of atomic carbon and carbon monoxide compared with visual extinction in the Ophiuchus molecular cloud complex, ApJ, 344, 311 (1989)ADSCrossRefGoogle Scholar
  243. Frisch, U., Turbulence, Cambridge University Press (1996)Google Scholar
  244. Fukui, Y., Kawamura, A., Wong, T., Murai, M., Iritani, H., Mizuno, N., Mizuno, Y., Onishi, T., Hughes, A., Ott, J., Muller, E., Staveley-Smith, L., Kim, S., Molecular and Atomic Gas in the Large Magellanic Cloud. II. Three-dimensional Correlation Between CO and H\(_{{\rm I}}\), ApJ, 705, 144 (2009)Google Scholar
  245. Furuya, K., Aikawa, Y., Tomida, K., Matsumoto, T., Saigo, K., Tomisaka, K., Hersant, F., Wakelam, V., Chemistry in the First Hydrostatic Core Stage by Adopting Three-dimensional Radiation Hydrodynamic Simulations, ApJ, 758, 86 (2012)ADSCrossRefGoogle Scholar
  246. Gaensler, B. M., Madsen, G. J., Chatterjee, S., Mao, S. A., The Vertical Structure of Warm Ionised Gas in the Milky Way, Pub. Astron. Soc. Aust., 25, 184 (2008)ADSCrossRefGoogle Scholar
  247. Gaisser, T. K., The Cosmic-ray Spectrum: from the knee to the ankle, J. Phys. Conf. Ser., 47, 15 (2006)ADSCrossRefGoogle Scholar
  248. Galametz, M., Madden, S. C., Galliano, F., Hony, S., Bendo, G. J., Sauvage, M., Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies, A&A, 532, 56 (2011)Google Scholar
  249. Galli, D., Palla, F., Deuterium chemistry in the primordial gas, Plan. Space Sci., 50, 1197 (2002)ADSCrossRefGoogle Scholar
  250. Galván-Madrid, R., Peters, T., Keto, E. R., Low, M.-M. M., Banerjee, R., Klessen, R. S., Time variability in simulated ultracompact and hypercompact H\(_{{\rm II}}\) regions, MNRAS, 416, 1033 (2011)Google Scholar
  251. Gammie, C. F., Ostriker, E. C., Can nonlinear hydromagnetic waves support a self-gravitating cloud? ApJ, 466, 814 (1996)ADSCrossRefGoogle Scholar
  252. Genzel R., Physical conditions and heating/cooling processes in high mass star formation regions, NATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, eds. C. J. Lada and N. D. Kylafis, 155 (1991)Google Scholar
  253. Georgy, C., Ekström, S., Meynet, G., Massey, P., Levesque, E. M., Hirschi, R., Eggenberger, P., Maeder, A., Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z = 0.014, A&A, 542, 29 (2012)Google Scholar
  254. Girichidis, P., Federrath, C., Allison, R., Banerjee, R., Klessen, R. S., Importance of the initial conditions for star formation - III. Statistical properties of embedded protostellar clusters, MNRAS, 420, 3264 (2012a)Google Scholar
  255. Girichidis, P., Federrath, C., Banerjee, R.,Klessen, R. S., Importance of the initial conditions for star formation - II. Fragmentation-induced starvation and accretion shielding, MNRAS, 420, 613 (2012b)Google Scholar
  256. Girichidis, P., Federrath, C., Banerjee, R., Klessen, R. S., Importance of the initial conditions for star formation - I. Cloud evolution and morphology, MNRAS, 413, 2741 (2011)Google Scholar
  257. Girichidis P., Konstandin L., Whitworth A. P., Klessen R. S., On the Evolution of the Density Probability Density Function in Strongly Self-gravitating Systems, ApJ, 781, 91 (2014)ADSCrossRefGoogle Scholar
  258. Glassgold, A. E., Langer, W. D., Heating of Molecular-Hydrogen Clouds by Cosmic Rays and X-Rays, ApJ, 186, 859 (1973)ADSCrossRefGoogle Scholar
  259. Glassgold, A. E., Langer, W. D., The C\(^{+}\)–CO transition in interstellar clouds, ApJ, 197, 347 (1975)Google Scholar
  260. Glassgold, A. E., Galli, D., Padovani, M., Cosmic-ray and X-ray heating of interstellar clouds and protoplanetary disks, ApJ, 756, 157 (2012)ADSCrossRefGoogle Scholar
  261. Glover, S. C. O., Comparing Gas-Phase and Grain-catalyzed H\(_2\) Formation, ApJ, 584, 331 (2003)ADSCrossRefGoogle Scholar
  262. Glover, S. C. O., Abel, T., Uncertainties in H\(_2\) and HD chemistry and cooling and their role in early structure formation, MNRAS, 388, 1627 (2008)ADSCrossRefGoogle Scholar
  263. Glover, S. C. O., Clark, P. C., Is molecular gas necessary for star formation? MNRAS, 421, 9 (2012a)ADSGoogle Scholar
  264. Glover, S. C. O., Clark, P. C., Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches, MNRAS, 421, 116 (2012b)ADSGoogle Scholar
  265. Glover, S. C. O., Clark, P. C., Star formation in metal-poor gas clouds, MNRAS, 426, 377 (2012c)ADSCrossRefGoogle Scholar
  266. Glover, S. C. O., Clark, P. C., Molecular cooling in the diffuse interstellar medium, MNRAS, 437, 9 (2014)ADSCrossRefGoogle Scholar
  267. Glover, S. C. O., Clark, P. C., Micic, M., Molina, F. Z., Modelling [CI] emission from turbulent molecular clouds, MNRAS, 448, 1607 (2015)Google Scholar
  268. Glover, S. C. O., Federrath, C., Low, M.-M. M., Klessen, R. S., Modelling CO formation in the turbulent interstellar medium, MNRAS, 404, 2 (2010)ADSGoogle Scholar
  269. Glover, S. C. O., Mac Low, M.-M., Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions, ApJ, 659, 1317 (2007b)Google Scholar
  270. Glover, S. C. O., Mac Low, M.-M., Simulating the Formation of Molecular Clouds. I. Slow Formation by Gravitational Collapse from Static Initial Conditions, ApJS, 169, 239 (2007a)Google Scholar
  271. Glover, S. C. O., Jappsen, A.-K., Star Formation at Very Low Metallicity. I. Chemistry and Cooling at Low Densities, ApJ, 666, 1 (2007)Google Scholar
  272. Gnat, O., Ferland, G. J., Ion-by-ion Cooling Efficiencies, ApJS, 199, 20 (2012)ADSCrossRefGoogle Scholar
  273. Gnat, O., Sternberg, A., Time-dependent Ionization in Radiatively Cooling Gas, ApJS, 168, 213 (2007)ADSCrossRefGoogle Scholar
  274. Gnedin, N. Y., Hollon, N., Cooling and Heating Functions of Photoionized Gas, ApJ, 202, 13 (2012)ADSCrossRefGoogle Scholar
  275. Gnedin, N. Y., Tassis, K., Kravtsov, A. V., Modeling Molecular Hydrogen and Star Formation in Cosmological Simulations, ApJ, 697, 55 (2009)ADSCrossRefGoogle Scholar
  276. Godard, B., Falgarone, E., Pineau des Forêts, G., Models of turbulent dissipation regions in the diffuse interstellar medium, A&A, 495, 847 (2009)Google Scholar
  277. Goldbaum, N. J., Krumholz, M. R., Matzner, C. D., McKee, C. F., The Global Evolution of Giant Molecular Clouds. II. The Role of Accretion, ApJ, 738, 101 (2011)Google Scholar
  278. Goldreich, P., Kwan, J., Molecular Clouds, ApJ, 189, 441 (1974)ADSCrossRefGoogle Scholar
  279. Goldsmith, P. F., Temperatures and Densities in Interstellar Molecular Clouds, in: Molecular Clouds in the Milky Way and External Galaxies, edited by R. Chiao, p. 1, Springer, New York (1988)Google Scholar
  280. Goldsmith, P. F., Molecular Depletion and Thermal Balance in Dark Cloud Cores, ApJ, 557, 736 (2001)ADSCrossRefGoogle Scholar
  281. Goldsmith, P. F., Langer, W. D., Molecular cooling and thermal balance of dense interstellar clouds, ApJ, 222, 881 (1978)ADSCrossRefGoogle Scholar
  282. Gómez, G. C., Cox, D. P., Three-dimensional magnetohydrodynamic modeling of the gaseous structure of the galaxy: Setup and initial results, ApJ, 580, 235 (2002)ADSCrossRefGoogle Scholar
  283. Gomez, M., Jones, B. F., Hartmann, L., Kenyon, S. J., Stauffer, J. R., Hewett, R., Reid, I. N., On the Ages of Pre-Main-Sequence Stars in Taurus, AJ, 104, 762 (1992)ADSCrossRefGoogle Scholar
  284. Gondhalekar, P. M., Phillips, A. P., Wilson, R., Observations of the interstellar ultraviolet radiation field from the S2/68 sky-survey telescope, A&A, 85, 272 (1980)ADSGoogle Scholar
  285. Goodman, A. A., Barranco, J. A., Wilner, D. J., Heyer, M. H., Coherence in Dense Cores. II. The Transition to Coherence, ApJ, 504, 223 (1998)Google Scholar
  286. Goodwin, S. P., Kroupa, P., Limits on the primordial stellar multiplicity, A&A, 439, 565 (2005)ADSCrossRefGoogle Scholar
  287. Goodwin, S. P., Whitworth, A. P., Ward-Thompson, D., Simulating star formation in molecular cloud cores. I. The influence of low levels of turbulence on fragmentation and multiplicity, A&A, 414, 633 (2004a)Google Scholar
  288. Goodwin, S. P., Whitworth, A. P., Ward-Thompson, D., Simulating star formation in molecular cores. II. The effects of different levels of turbulence, A&A, 423, 169 (2004b)Google Scholar
  289. Goodwin, S. P., Whitworth A. P., Ward-Thompson D., Star formation in molecular cores. III. The effect of the turbulent power spectrum, A&A, 452, 487 (2006)Google Scholar
  290. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, T., Pascucci, I., Usuda, T., High-Resolution Infrared Imaging of Herschel 36 SE: A Showcase for the Influence of Massive Stars in Cluster Environments, ApJ, 649, 299 (2006)ADSCrossRefGoogle Scholar
  291. Gould, R. J., Salpeter, E. E., The Interstellar Abundance of the Hydrogen Molecule. I. Basic Processes, ApJ, 138, 393 (1963)Google Scholar
  292. Gredel, R., Lepp, S., Dalgarno, A., The C/CO ratio in dense interstellar clouds, ApJ, 323, L137 (1987)ADSCrossRefGoogle Scholar
  293. Gredel, R., Lepp, S., Dalgarno, A., Herbst, E., Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules, ApJ, 347, 289 (1989)ADSCrossRefGoogle Scholar
  294. Greene, T. P., Meyer, M. R., An Infrared Spectroscopic Survey of the \(\rho \)-Ophiuchi Young Stellar Cluster: Masses and Ages from the H-R Diagram, ApJ, 450, 233 (1995)ADSCrossRefGoogle Scholar
  295. Greif, T. H., Bromm, V., Clark, P. C., Glover, S. C. O., Smith, R. J., Klessen, R. S., Yoshida, N., Springel, V., Formation and evolution of primordial protostellar systems, MNRAS, 424, 399 (2012)ADSCrossRefGoogle Scholar
  296. Greif, T. H., Springel, V., White, S. D. M., Glover, S. C. O., Clark, P. C., Smith, R. J., Klessen, R. S., Bromm, V., Simulations on a Moving Mesh: The Clustered Formation of Population III Protostars, ApJ, 737, 75 (2011)ADSCrossRefGoogle Scholar
  297. Guszejnov, D., Hopkins, P. F., Mapping the core mass function to the initial mass function, MNRAS, 450, 4137 (2015)Google Scholar
  298. Gutermuth, R. A., Pipher, J. L., Megeath, S. T., Myers, P. C., Allen, L. E., Allen, T. S., A Correlation between Surface Densities of Young Stellar Objects and Gas in Eight Nearby Molecular Clouds, ApJ, 739, 84 (2011)ADSCrossRefGoogle Scholar
  299. Habing, H. J., The interstellar radiation density between 912 Å and 2400 Å, Bull. Astron. Inst. Netherlands, 19, 421 (1968)ADSGoogle Scholar
  300. Haffner, L. M., Dettmar, R.-J., Beckman, J. E., Wood, K., Slavin, J. D., Giammanco, C., et al., The warm ionized medium in spiral galaxies, Rev. Mod. Phys., 81, 969 (2009)ADSCrossRefGoogle Scholar
  301. Hansen, C. J., Kawaler, S. D., Stellar Interiors: Physical principles, Structure, and Evolution., Springer Verlag, New York (1994)CrossRefGoogle Scholar
  302. Hartmann, L., Flows, Fragmentation, and Star Formation. I. Low-Mass Stars in Taurus, ApJ, 578, 914 (2002)Google Scholar
  303. Hartmann, L., Ballesteros-Paredes, J., Bergin, E. A., Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood, ApJ, 562, 852 (2001)ADSCrossRefGoogle Scholar
  304. Hatchell, J., Richer, J. S., Fuller, G. A., Qualtrough, C. J., Ladd, E. F., Chandler, C. J., Star formation in Perseus. Clusters, filaments and the conditions for star formation, A&A, 440, 151 (2005)Google Scholar
  305. Hawley, J. F., Gammie, C. F., Balbus, S. A., Local three-dimensional magnetohydrodynamic simulations of accretion disks, ApJ, 440, 742 (1995)ADSCrossRefGoogle Scholar
  306. Heiderman, A., Evans, N. J., Allen, L. E., Huard, T., Heyer, M., The Star Formation Rate and Gas Surface Density Relation in the Milky Way: Implications for Extragalactic Studies, ApJ, 723, 1019 (2010)ADSCrossRefGoogle Scholar
  307. Heiles, C., Troland, T. H., The Millennium Arecibo 21 Centimeter Absorption-Line Survey. II. Properties of the Warm and Cold Neutral Media, ApJ, 586, 1067 (2003)Google Scholar
  308. Heiles, C., Troland, T. H., The Millennium Arecibo 21 Centimeter Absorption-Line Survey. IV. Statistics of Magnetic Field, Column Density, and Turbulence, ApJ, 624, 773 (2005)Google Scholar
  309. Heiner, J. S., Vázquez-Semadeni, E., Applying a one-dimensional PDR model to the Taurus molecular cloud and its atomic envelope, MNRAS, 429, 3584 (2013)ADSCrossRefGoogle Scholar
  310. Heitsch, F., Burkert, A., Hartmann, L. W., Slyz, A. D., Devriendt, J. E. G., Formation of Structure in Molecular Clouds: A Case Study, ApJ, 633, L113 (2005)ADSCrossRefGoogle Scholar
  311. Heitsch, F., Hartmann, L., Rapid Molecular Cloud and Star Formation: Mechanisms and Movies, ApJ, 689, 290 (2008)ADSCrossRefGoogle Scholar
  312. Hartwig, T., Clark, P. C., Glover, S. C. O., Klessen, R. S., Sasaki, M., A new approach to determine optically thick H\(_2\) cooling and its effect on primordial star formation, ApJ, 799, 144 (2015)Google Scholar
  313. Heitsch, F., Hartmann, L. W., Slyz, A. D., Devriendt, J. E. G., Burkert, A., Cooling, Gravity, and Geometry: Flow-driven Massive Core Formation, ApJ, 674, 316 (2008)Google Scholar
  314. Heitsch, F., Mac Low, M.-M., Klessen, R. S., Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence, ApJ, 547, 280 (2001a)Google Scholar
  315. Heitsch, F., Zweibel, E. G., Mac Low, M.-M., Li, P., Norman, M. L., Magnetic Field Diagnostics Based on Far-Infrared Polarimetry: Tests Using Numerical Simulations, ApJ, 561, 800 (2001b)Google Scholar
  316. Heitsch, F., Putman, M. E., The fate of high-velocity clouds: Warm or cold cosmic rain? ApJ, 698, 1485 (2009)ADSCrossRefGoogle Scholar
  317. Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Burkert, A., Cloud dispersal in turbulent flows, MNRAS, 373, 1379 (2006)Google Scholar
  318. Heitsch, F., Zweibel, E. G., Slyz, A. D., Devriendt, J. E. G., Turbulent Ambipolar Diffusion: Numerical Studies in Two Dimensions, ApJ, 603, 165 (2004)ADSCrossRefzbMATHGoogle Scholar
  319. Hennebelle, P., Audit, E., On the structure of the turbulent interstellar atomic hydrogen. I. Physical characteristics. Influence and nature of turbulence in a thermally bistable flow, A&A, 465, 431 (2007)Google Scholar
  320. Hennebelle, P., Chabrier, G., Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores, ApJ, 684, 395 (2008)ADSCrossRefGoogle Scholar
  321. Hennebelle, P., Chabrier, G., Analytical Theory for the Initial Mass Function. II. Properties of the Flow, ApJ, 702, 1428 (2009)Google Scholar
  322. Hennebelle, P., Chabrier, G., Analytical Star Formation Rate from Gravoturbulent Fragmentation, ApJ, 743, L29 (2011)ADSCrossRefGoogle Scholar
  323. Hennebelle P., Chabrier G., Analytical Theory for the Initial Mass Function. III. Time Dependence and Star Formation Rate, ApJ, 770, 150 (2013)Google Scholar
  324. Hennebelle, P., Ciardi, A., Disk formation during collapse of magnetized protostellar cores, A&A, 506, L29 (2009)ADSCrossRefGoogle Scholar
  325. Hennebelle, P., Commerçon, B., Joos, M., Klessen, R. S., Krumholz, M., Tan, J. C., Teyssier, R., Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores, A&A, 528, A72 (2011)ADSCrossRefGoogle Scholar
  326. Hennebelle, P., Falgarone, E., Turbulent molecular clouds, A&A Rev., 20, 55 (2012)ADSCrossRefGoogle Scholar
  327. Hennebelle, P., Fromang, S., Magnetic processes in a collapsing dense core. I. Accretion and ejection, A&A, 477, 9 (2008)Google Scholar
  328. Hennebelle, P., Iffrig, O., Simulations of magnetized multiphase galactic disk regulated by supernovae explosions, A&A, 570, A81 (2014)ADSCrossRefGoogle Scholar
  329. Hennebelle, P., Pérault, M., Dynamical condensation in a thermally bistable flow. Application to interstellar cirrus, A&A, 351, 309 (1999)Google Scholar
  330. Hennebelle, P., Pérault, M., Dynamical condensation in a magnetized and thermally bistable flow. Application to interstellar cirrus, A&A, 359, 1124 (2000)Google Scholar
  331. Hennebelle, P., Teyssier, R., Magnetic processes in a collapsing dense core. II. Fragmentation. Is there a fragmentation crisis?, A&A, 477, 25 (2008)Google Scholar
  332. Henning, Th., Influence of molecular outflows from young stellar objects on molecular clouds, AN, 310, 363 (1989)ADSGoogle Scholar
  333. Henry, R. C., Anderson, R. C., Fastie, W. G., Far-ultraviolet studies. VII - The spectrum and latitude dependence of the local interstellar radiation field, ApJ, 239, 859 (1980)Google Scholar
  334. Herrera-Camus, R., Fisher, D. B., Bolatto, A. D., Leroy, A. K., Walter, F., Gordon, K. D., et al., Dust-to-gas Ratio in the Extremely Metal-poor Galaxy I Zw 18, ApJ, 752, 112 (2012)ADSCrossRefGoogle Scholar
  335. Heyer, M., Krawczyk, C., Duval, J., Jackson, J. M., Re-examining Larson’s scaling relationships in galactic molecular clouds, ApJ, 699, 1092 (2009)ADSCrossRefGoogle Scholar
  336. Heyer, M. H., Brunt, C. M., The Universality of Turbulence in Galactic Molecular Clouds, ApJ, 615, L45 (2004)ADSCrossRefGoogle Scholar
  337. Heyer, M. H., Brunt, C. M., Trans-Alfvénic motions in the Taurus molecular cloud, MNRAS, 420, 1562 (2012)ADSCrossRefGoogle Scholar
  338. Heyer, M. H., Brunt, C., Snell, R. L., Howe, J. E., Schloerb, F. P., Carpenter, J. M., The Five College Radio Astronomy Observatory CO Survey of the Outer Galaxy, ApJS, 115, 241 (1998)ADSCrossRefGoogle Scholar
  339. Hillenbrand, L. A., On the Stellar Population and Star-Forming History of the Orion Nebula Cluster, AJ, 113, 1733 (1997)ADSCrossRefGoogle Scholar
  340. Hillenbrand, L. A., Hartmann, L. W., A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics, ApJ, 492, 540 (1998)ADSCrossRefGoogle Scholar
  341. Hirota, T., Bushimata, T., Choi, Y. K., Honma, M., Imai, H., Iwadate, K., Jike, T., Kameno, S., Kameya, O., Kamohara, R., Kan-Ya, Y., Kawaguchi, N., Kijima, M., Kim, M. K., Kobayashi, H., Kuji, S., Kurayama, T., Manabe, S., Maruyama, K., Matsui, M., Matsumoto, N., Miyaji, T., Distance to Orion KL Measured with VERA, PASJ, 59, 897 (2007)ADSGoogle Scholar
  342. Ho, P. T. P., Haschick, A. D., Formation of OB clusters: VLA observations, ApJ, 248, 622 (1981)ADSCrossRefGoogle Scholar
  343. Hocuk, S., Spaans, M., The impact of X-rays on molecular cloud fragmentation and the inital mass function, A&A, 522, A24 (2010)ADSCrossRefGoogle Scholar
  344. Hollenbach, D., Kaufman, M. J., Bergin, E. A., Melnick, G. J., Water, O\(_2\), and Ice in Molecular Clouds, ApJ, 690, 1497 (2009)ADSCrossRefGoogle Scholar
  345. Hollenbach, D., McKee, C. F., Molecule formation and infrared emission in fast interstellar shocks. I Physical processes, ApJS, 41, 555 (1979)Google Scholar
  346. Hollenbach, D., McKee, C. F., Molecule formation and infrared emission in fast interstellar shocks. III - Results for J shocks in molecular clouds, ApJ, 342, 306 (1989)Google Scholar
  347. Holman K., Walch S. K., Goodwin S. P., Whitworth A. P., Mapping the core mass function on to the stellar initial mass function: multiplicity matters, MNRAS, 432, 3534 (2013)ADSCrossRefGoogle Scholar
  348. Hopkins P. F., An excursion-set model for the structure of giant molecular clouds and the interstellar medium, MNRAS, 423, 2016 (2012a)ADSCrossRefGoogle Scholar
  349. Hopkins P. F., The stellar initial mass function, core mass function and the last-crossing distribution, MNRAS, 423, 2037 (2012b)ADSCrossRefGoogle Scholar
  350. Hopkins P. F., Variations in the stellar CMF and IMF: from bottom to top, MNRAS, 433, 170 (2013a)ADSCrossRefGoogle Scholar
  351. Hopkins P. F., A general theory of turbulent fragmentation, MNRAS, 430, 1653 (2013b)ADSCrossRefGoogle Scholar
  352. Hopkins, A. M., McClure-Griffiths, N. M., Gaensler, B. M., Linked evolution of gas and star formation in galaxies over cosmic history, ApJ, 682, L13 (2008)ADSCrossRefGoogle Scholar
  353. Hosokawa T., Omukai K., Evolution of Massive Protostars with High Accretion Rates, ApJ, 691, 823 (2009)ADSCrossRefGoogle Scholar
  354. Hou, L. G., Gao, X. Y., A statistical study of gaseous environment of Spitzer interstellar bubbles, MNRAS, 438, 426 (2014)ADSCrossRefGoogle Scholar
  355. Hoyle, F., Ellis, G. R. A., On the Existence of an Ionized Layer about the Galactic Plane, Aust. J. Phys., 16, 1 (1963)ADSCrossRefGoogle Scholar
  356. Hoyle, F., Lyttleton, R. A., The evolution of the stars, Proceedings of the Cambridge Philosophical Society, 35, 592 (1939)ADSzbMATHCrossRefGoogle Scholar
  357. Hughes, A., Meidt, S. E., Colombo, D., Schinnerer, E., Pety, J., Leroy, A. K., Dobbs, C. L., García-Burillo, S., Thompson, T. A., Dumas, G., Schuster, K. F., Kramer, C., A Comparative Study of Giant Molecular Clouds in M51, M33, and the Large Magellanic Cloud, ApJ, 779, 46 (2013)ADSCrossRefGoogle Scholar
  358. Hughes A., Meidt S. E., Schinnerer E., Colombo, D., Schinnerer, E., Pety, P., Leroy, A. K., Dobbs, C. L., Garcia-Burillo, S., Thompson, T. A., Dumas, G., Schuster, K. L, Kramer, C., Probability Distribution Functions of \(^{12}\)0)) Brightness and Integrated Intensity in M51: The PAWS View, ApJ, 779, 44 (2013)Google Scholar
  359. Hunter, D. A., Shaya, E. J., Scowen, P., Hester, J. J., Groth, E. J., Lynds, R., O’Neil, Jr., E. J., Gas near the center of 30 Doradus as revealed by Hubble Space Telescope images, ApJ, 444, 758 (1995)ADSCrossRefGoogle Scholar
  360. Imara, N., Blitz, L., Angular Momentum in Giant Molecular Clouds. I. The Milky Way, ApJ, 732, 78 (2011)Google Scholar
  361. Indriolo, N., McCall, B. J., Investigating the cosmic-ray ionization rate in the Galactic diffuse interstellar medium through observations of H\(_{3}^{+}\), ApJ, 745, 91 (2012)ADSCrossRefGoogle Scholar
  362. Inutsuka, S., The Mass Function of Molecular Cloud Cores, ApJ, 559, L149 (2001)ADSCrossRefGoogle Scholar
  363. Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., Mac Low, M.-M., The stellar mass spectrum from non-isothermal gravoturbulent fragmentation, A&A, 435, 611 (2005)Google Scholar
  364. Jaquet, R., Staemmler, V., Smith, M. D., Flower, D. R., Excitation of the fine-structure transitions of O(\(^{3}\)), J. Phys. B, 25, 285 (1992)Google Scholar
  365. Jeans J. H., The Stability of a Spherical Nebula, Phil. Trans. A., 199, 1 (1902)ADSzbMATHCrossRefGoogle Scholar
  366. Jedamzik K., The Cloud-in-Cloud Problem in the Press-Schechter Formalism of Hierarchical Structure Formation, ApJ, 448, 1 (1995)ADSCrossRefGoogle Scholar
  367. Jenkins, E. B., A Unified Representation of Gas-Phase Element Depletions in the Interstellar Medium, ApJ, 700, 1299 (2009)ADSCrossRefGoogle Scholar
  368. Jenkins, E. B., The Fractional Ionization of the Warm Neutral Interstellar Medium, ApJ, 764, 25 (2013)ADSCrossRefGoogle Scholar
  369. Jensen, M. J., et al., Dissociative recombination of H\(_{3}\), ApJ, 543, 764 (2000)Google Scholar
  370. Jiang, Z., Tamura, M., Hoare, M. G., Yao, Y., Ishii, M., Fang, M., Yang, J., Disks around Massive Young Stellar Objects: Are They Common?, ApJ, 673, L175 (2008)ADSCrossRefGoogle Scholar
  371. Jijina, J., Myers, P. C., Adams, F. C., Dense Cores Mapped in Ammonia: A Database, ApJS, 125, 161 (1999)ADSCrossRefGoogle Scholar
  372. Johnstone, D., Di Francesco, J., Kirk, H., An Extinction Threshold for Protostellar Cores in Ophiuchus, ApJ, 611, L45 (2004)ADSCrossRefGoogle Scholar
  373. Johnstone, D., Fich, M., Mitchell, G. F., Moriarty-Schieven, G., Large Area Mapping at 850 Microns. III. Analysis of the Clump Distribution in the Orion B Molecular Cloud, ApJ, 559, 307 (2001)Google Scholar
  374. Johnstone, D., Matthews, H., Mitchell, G. F., Large Area Mapping at 850 \(\mu \)m. IV. Analysis of the Clump Distribution in the Orion B South Molecular Cloud, ApJ, 639, 259 (2006)Google Scholar
  375. Johnstone, D., Wilson, C. D., Moriarty-Schieven, G., Joncas, G., Smith, G., Gregersen, E., Fich, M., Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the \(\rho \) Ophiuchi Molecular Cloud, ApJ, 545, 327 (2000)Google Scholar
  376. Joung, M. K. R., Mac Low, M.-M., Turbulent Structure of a Stratified Supernova-driven Interstellar Medium, ApJ, 653, 1266 (2006)Google Scholar
  377. Joung, M. R., Mac Low, M.-M., Bryan, G. L., Dependence of interstellar turbulent pressure on the supernova rate, ApJ, 704, 137 (2009)Google Scholar
  378. Jura, M., Interstellar clouds containing optically thin H\(_2\), ApJ, 197, 575 (1975)ADSCrossRefGoogle Scholar
  379. Kafatos, M., Time-Dependent Radiative Cooling of a Hot Low-Density Cosmic Gas, ApJ, 182, 433 (1973)ADSCrossRefGoogle Scholar
  380. Kahn, F. D., Cocoons around early-type stars, A&A, 37, 149 (1974)ADSGoogle Scholar
  381. Kainulainen J., Beuther H., Banerjee R., Federrath C., Henning T., Probing the evolution of molecular cloud structure. II. From chaos to confinement, A&A, 530, A64 (2011)Google Scholar
  382. Kainulainen J., Federrath C., Henning T., Connection between dense gas mass fraction, turbulence driving, and star formation efficiency of molecular clouds, A&A, 553, L8 (2013)ADSCrossRefGoogle Scholar
  383. Kalberla, P. M. W., Dark Matter in the Milky Way. I. The Isothermal Disk Approximation, ApJ, 588, 805 (2003)Google Scholar
  384. Kalberla, P. M. W., Kerp, J., The H\(_{{\rm I}}\) Distribution of the Milky Way, ARA&A, 47, 27 (2009)Google Scholar
  385. Kandori, R., Nakajima, Y., Tamura, M., Tatematsu, K., Aikawa, Y., Naoi, T., Sugitani, K., Nakaya, H., Nagayama, T., Nagata, T., Kurita, M., Kato, D., Nagashima, C., Sato, S., Near-Infrared Imaging Survey of Bok Globules: Density Structure, AJ, 130, 2166 (2005)ADSCrossRefGoogle Scholar
  386. Kawamura, A., Mizuno, Y., Minamidani, T., Filipovic, M. D., Staveley-Smith, L., Kim, S., Mizuno, N., Onishi, T., Mizuno, A., Fukui, Y., The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. II. Star Formation, ApJS, 184, 1 (2009)Google Scholar
  387. Kennicutt, R. C., Evans, N. J., Star formation in the milky way and nearby galaxies, ARA&A, 50, 531 (2012)ADSCrossRefGoogle Scholar
  388. Keto, E., On the Evolution of Ultracompact H\(_{{\rm II}}\) Regions, ApJ, 580, 980 (2002)Google Scholar
  389. Keto, E., The Formation of Massive Stars by Accretion through Trapped Hypercompact H\(_{{\rm II}}\) Regions, ApJ, 599, 1196 (2003)Google Scholar
  390. Keto, E., The Formation of Massive Stars: Accretion, Disks, and the Development of Hypercompact H\(_{{\rm II}}\) Regions, ApJ, 666, 976 (2007)Google Scholar
  391. Keto, E., Caselli, P., The Different Structures of the Two Classes of Starless Cores, ApJ, 683, 238 (2008)ADSCrossRefGoogle Scholar
  392. Keto, E., Caselli, P., Dynamics and depletion in thermally supercritical starless cores, MNRAS, 402, 1625 (2010)ADSCrossRefGoogle Scholar
  393. Keto, E., Field, G., Dark Cloud Cores and Gravitational Decoupling from Turbulent Flows, ApJ, 635, 1151 (2005)ADSCrossRefGoogle Scholar
  394. Keto, E., Wood, K., Observations on the Formation of Massive Stars by Accretion, ApJ, 637, 850 (2006)ADSCrossRefGoogle Scholar
  395. Kevlahan, N., Pudritz, R. E., Shock-generated vorticity in the interstellar medium and the origin of the stellar initial mass function, ApJ, 702, 39 (2009)ADSCrossRefGoogle Scholar
  396. Kim, J., Hong, S. S., Ryu, D., Jones, T. W., Three-dimensional Evolution of the Parker Instability under a Uniform Gravity, ApJ, 506, L139 (1998)ADSCrossRefGoogle Scholar
  397. Kim, J., Ryu, D., Jones, T. W., Three-dimensional Simulations of the Parker Instability in a Uniformly Rotating Disk, ApJ, 557, 464 (2001)ADSCrossRefGoogle Scholar
  398. Kim, W.-T., Ostriker, E. C., Stone, J. M., Three-dimensional Simulations of Parker, Magneto-Jeans, and Swing Instabilities in Shearing Galactic Gas Disks, ApJ, 581, 1080 (2002)Google Scholar
  399. Kippenhahn, R., Weigert, A., Weiss, A., Stellar Structure and Evolution, Springer-Verlag, Berlin (2012)Google Scholar
  400. Kirk, H., Johnstone, D., Tafalla, M., Dynamics of Dense Cores in the Perseus Molecular Cloud, ApJ, 668, 1042 (2007)ADSCrossRefGoogle Scholar
  401. Klessen, R. S., One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media, ApJ, 535, 869 (2000)ADSCrossRefGoogle Scholar
  402. Klessen, R. S., The Formation of Stellar Clusters: Time-Varying Protostellar Accretion Rates, ApJ, 550, L77 (2001a)ADSCrossRefGoogle Scholar
  403. Klessen, R. S., The Formation of Stellar Clusters: Mass Spectra from Turbulent Molecular Cloud Fragmentation, ApJ, 556, 837 (2001b)ADSCrossRefGoogle Scholar
  404. Klessen, R. S., Star Formation in Molecular Clouds, in: EAS Publications Series, vol. 51 of EAS Publications Series, edited by C. Charbonnel, T. Montmerle, p. 133 (2011)Google Scholar
  405. Klessen, R. S., Ballesteros-Paredes, J., Vázquez-Semadeni, E., Durán-Rojas, C., Quiescent and Coherent Cores from Gravoturbulent Fragmentation, ApJ, 620, 786 (2005)ADSCrossRefGoogle Scholar
  406. Klessen R. S., Burkert A., Bate M. R., Fragmentation of Molecular Clouds: The Initial Phase of a Stellar Cluster, ApJ, 501, L205 (1998)ADSCrossRefGoogle Scholar
  407. Klessen, R. S., Burkert, A., The Formation of Stellar Clusters: Gaussian Cloud Conditions. I., ApJS, 128, 287 (2000)Google Scholar
  408. Klessen, R. S., Burkert, A., The Formation of Stellar Clusters: Gaussian Cloud Conditions. II., ApJ, 549, 386 (2001)Google Scholar
  409. Klessen, R. S., Heitsch, F., Mac Low, M., Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence, ApJ, 535, 887 (2000)Google Scholar
  410. Klessen, R. S., Hennebelle, P., Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks, A&A, 520, A17 (2010)ADSCrossRefGoogle Scholar
  411. Klessen, R. S., Lin, D. N., Diffusion in supersonic turbulent compressible flows, PRE, 67, 046311 (2003)ADSCrossRefGoogle Scholar
  412. Kolmogorov, A. N., Dokl. Akad. Nauk SSSR, 30, 301 (1941)Google Scholar
  413. Konstandin, L., Federrath, C., Klessen, R. S., Schmidt, W., A New Density Variance - Mach Number Relation for Subsonic and Supersonic Isothermal Turbulence, J. Fluid Mech., 692, 183 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  414. Könyves, V, et al., The Aquila prestellar core population revealed by Herschel, A&A, 518, L106 (2010)ADSCrossRefGoogle Scholar
  415. Koyama, H., Inutsuka, S., An Origin of Supersonic Motions in Interstellar Clouds, ApJ, 564, L97 (2002)ADSCrossRefGoogle Scholar
  416. Kramer, C., Cubick, M., Röllig, M., Sun, K., Yonekura, Y., Aravena, M., et al., Clumpy photon-dominated regions in Carina. I. [C\(_{{\rm I}}\)] fields, A&A, 477, 547 (2008)Google Scholar
  417. Krasnopolsky, R., Li, Z.-Y., Blandford, R., Magnetocentrifugal launching of jets from accretion disks. I. Cold axisymmetric flows, ApJ, 526, 631 (1999)Google Scholar
  418. Kritsuk, A. G., Norman, M. L., Thermal Instability-induced Interstellar Turbulence, ApJ, 569, L127 (2002a)ADSCrossRefGoogle Scholar
  419. Kritsuk, A. G., Norman, M. L., Interstellar Phase Transitions Stimulated by Time-dependent Heating, ApJ, 580, L51 (2002b)ADSCrossRefGoogle Scholar
  420. Kritsuk, A. G., Norman, M. L., Wagner, R., On the Density Distribution in Star-forming Interstellar Clouds, ApJ, 727, L20 (2011)ADSCrossRefGoogle Scholar
  421. Kroupa P., On the variation of the initial mass function, MNRAS, 322, 231 (2001)ADSCrossRefGoogle Scholar
  422. Kroupa, P., The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems, Science, 295, 82 (2002)ADSCrossRefGoogle Scholar
  423. Kroupa, P., The Fundamental Building Blocks of Galaxies, in: The Three-Dimensional Universe with Gaia (ESA SP 576), edited by C. Turon, K. S. O’Flaherty, M. A. C. Perryman, ESA Publications (2002)Google Scholar
  424. Kroupa, P., Tout, C. A., Gilmore, G., The effects of unresolved binary stars on the determination of the stellar mass function, MNRAS, 251, 293 (1991)ADSCrossRefGoogle Scholar
  425. Kroupa, P., Tout, C. A., Gilmore, G., The low-luminosity stellar mass function, MNRAS, 244, 73 (1990)Google Scholar
  426. Kroupa, P., Weidner, C., Pflamm-Altenburg, J., Thies, I., Dabringhausen, J., Marks, M., Maschberger, T., The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations, in: Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, edited by T. D. Oswald, G. Gilmore, Springer Science+Business Media (2013)Google Scholar
  427. Krumholz, M. R., Radiation Feedback and Fragmentation in Massive Protostellar Cores, ApJ, 641, L45 (2006)ADSCrossRefGoogle Scholar
  428. Krumholz, M. R., Star Formation in Atomic Gas, ApJ, 759, 9 (2012)ADSCrossRefGoogle Scholar
  429. Krumholz, M. R., The big problems in star formation: the star formation rate, stellar clustering, and the initial mass function, Phys. Reports, in press; arXiv: 1402.0867 (2014)
  430. Krumholz, M. R., Bate, M. R., Arce, H. G., Dale, J. E., Gutermuth, R., Klein, R. I., Li, Z.-Y., Nakamura, F., Zhang, Q., Star cluster formation and feedback. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 243, (2014)Google Scholar
  431. Krumholz, M. R., Klein, R. I., McKee, C. F., Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores, ApJ, 656, 959 (2007)ADSCrossRefGoogle Scholar
  432. Krumholz, M., Burkert, A., On the Dynamics and Evolution of Gravitational Instability-dominated Disks, ApJ, 724, 895 (2010)ADSCrossRefGoogle Scholar
  433. Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., Cunningham, A. J., The Formation of Massive Star Systems by Accretion, Science, 323, 5915, 754 (2009)Google Scholar
  434. Krumholz, M. R., Leroy, A. K., McKee, C. F., Which Phase of the Interstellar Medium Correlates with the Star Formation Rate? ApJ, 731, 25 (2011)ADSCrossRefGoogle Scholar
  435. Krumholz, M. R., Matzner, C. D., McKee, C. F., The global evolution of giant molecular clouds. I. Model formulation and quasi-equilibrium behavior, ApJ, 653, 361 (2006)Google Scholar
  436. Krumholz, M. R., McKee, C. F., A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies, ApJ, 630, 250 (2005)ADSCrossRefGoogle Scholar
  437. Krumholz, M. R., McKee, C. F., A Minimum Column Density of 1 g cm\(^{-2}\) for Massive Star Formation, Nature, 451, 1082 (2008)ADSCrossRefGoogle Scholar
  438. Krumholz, M. R., McKee, C. F., Klein, R. I., Bondi-Hoyle Accretion in a Turbulent Medium, ApJ, 638, 369 (2006)ADSCrossRefGoogle Scholar
  439. Krumholz, M. R., McKee, C. F., Tumlinson, J., The Atomic-to-Molecular Transition in Galaxies. I. An Analytic Approximation for Photodissociation Fronts in Finite Clouds, ApJ, 689, 865 (2008)Google Scholar
  440. Krumholz, M. R., McKee, C. F., Tumlinson, J., The Atomic-to-Molecular Transition in Galaxies. II: H\(_{{\rm I}}\) Column Densities, ApJ, 693, 216 (2009)Google Scholar
  441. Krumholz, M. R., Stone, J. M., Gardiner, T. A., Magnetohydrodynamic Evolution of H\(_{{\rm II}}\) Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media, ApJ, 671, 518 (2007b)Google Scholar
  442. Krumholz, M. R., Tan, J. C., Slow Star Formation in Dense Gas: Evidence and Implications, ApJ, 654, 304 (2007)ADSCrossRefGoogle Scholar
  443. Kuhlen, M., Krumholz, M. R., Madau, P., Smith, B. D., Wise, J., Dwarf Galaxy Formation with H\(_2\)-regulated Star Formation, ApJ, 749, 36 (2012)ADSCrossRefGoogle Scholar
  444. Kuiper, R., Klahr, H., Beuther, H., Henning, T., Circumventing the Radiation Pressure Barrier in the Formation of Massive Stars via Disk Accretion, ApJ, 722, 1556 (2010)ADSCrossRefGoogle Scholar
  445. Kuiper, R., Klahr, H., Beuther, H., Henning, T., Three-dimensional simulation of massive star formation in the disk accretion scenario, ApJ, 732, 20 (2011)ADSCrossRefGoogle Scholar
  446. Kurtz, S., Churchwell, E., Wood, D. O. S., Ultracompact H\(_{{\rm II}}\) regions. II. New high-resolution radio images, ApJS, 91, 659 (1994)Google Scholar
  447. Kwan, J., The mass spectrum of interstellar clouds, ApJ, 229, 567 (1979)ADSCrossRefGoogle Scholar
  448. Kwan, J., Valdes, F., Spiral gravitational potentials and the mass growth of molecular clouds, ApJ, 271, 604 (1983)ADSCrossRefGoogle Scholar
  449. Lada, C. J., Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single, ApJ, 640, L63 (2006)ADSCrossRefGoogle Scholar
  450. Lada, C. L., Alves, J. F., Lombardi, M., Lada, E. A., Near-Infrared Extinction and the Structure and Nature of Molecular Clouds, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil (2006)Google Scholar
  451. Lada, C. J., Bergin, E. A., Alves, J. F., Huard, T. L., The Dynamical State of Barnard 68: A Thermally Supported, Pulsating Dark Cloud, ApJ, 586, 286 (2003)Google Scholar
  452. Lada, C. J., Lada, E. A., Embedded Clusters in Molecular Clouds, ARA&A, 41, 57 (2003)ADSCrossRefGoogle Scholar
  453. Lada, C. J., Lombardi, M., Alves, J. F., On the Star Formation Rates in Molecular Clouds, ApJ, 724, 687 (2010)ADSCrossRefGoogle Scholar
  454. Lada, C. J., Lombardi, M., Roman-Zuniga, C., Forbrich, J., Alves, J. F., Schmidt’s Conjecture and Star Formation in Molecular Clouds, ApJ, 778, 133 (2013)ADSCrossRefGoogle Scholar
  455. Lada, C. J., Muench, A. A., Rathborne, J., Alves, J. F., Lombardi, M., The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure, ApJ, 672, 410 (2008)ADSCrossRefGoogle Scholar
  456. Lamers, H. J. G. L. M., Cassinelli, J. P., Introduction to Stellar Winds, Cambridge University Press (1999)Google Scholar
  457. Landau, L. D., Lifshitz, E. M., Fluid Mechanics, Pergamon Press, Oxford (1959)zbMATHGoogle Scholar
  458. Langer, W., The carbon monoxide abundance in interstellar clouds, ApJ, 206, 699 (1976)ADSCrossRefGoogle Scholar
  459. Langer, W. D., Velusamy, T., Li, D., Goldsmith, P. F., Star Forming Conditions of Quiescent Pre-Stellar Cores in Orion, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 8179 (2005)Google Scholar
  460. Larson, R. B., Turbulence and star formation in molecular clouds, MNRAS, 194, 809 (1981)ADSCrossRefGoogle Scholar
  461. Larson, R. B., Cloud fragmentation and stellar masses, MNRAS, 214, 379 (1985)ADSCrossRefGoogle Scholar
  462. Larson, R. B., Thermal physics, cloud geometry and the stellar initial mass function, MNRAS, 359, 211 (2005)ADSCrossRefGoogle Scholar
  463. Larson, R. B., Starrfield, S., On the Formation of Massive Stars and the Upper Limit of Stellar Masses, A&A, 13, 190 (1971)ADSGoogle Scholar
  464. Launhardt, R., Stutz, A. M., Schmiedeke, A., Henning, Th., Krause, O., Balog, Z., Beuther, H., Birkmann, S., Hennemann, M., Kainulainen, J., Khanzadyan, T., Linz, H., Lippok, N., Nielbock, M., Pitann, J., Ragan, S., Risacher, C., Schmalzl, M., Shirley, Y. L., Stecklum, B., Steinacker, J., Tackenberg, J., The Earliest Phases of Star Formation (EPoS): a Herschel key project. The thermal structure of low-mass molecular cloud cores, A&A, 551, 98 (2013)Google Scholar
  465. Le Bourlot, J., Le Petit, F., Pinto, C., Roueff, E., Roy, F., Surface chemistry in the interstellar medium. I. H\(_2\) formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms, A&A, 541, A76 (2012)Google Scholar
  466. Lee, C. W., Myers, P. C., Tafalla, M., A Survey of Infall Motions toward Starless Cores. I. CS (2–1) and N\(_{2}\) (1–0) Observations, ApJ, 526, 788 (1999)Google Scholar
  467. Lee, M.-Y., Stanimirović, S., Douglas, K. A., Knee, L. B. G., Di Francesco, J., Gibson, S. J., et al., A High-resolution Study of the H\(_{{\rm I}}\) Transition across the Perseus Molecular Cloud, ApJ, 748, 75 (2012)Google Scholar
  468. Leger, A., Jura, M., Omont, A., Desorption from interstellar grains, A&A, 144, 147 (1985)ADSGoogle Scholar
  469. Leroy, A. K., Bigiel, F., de Blok, W. J. G., Boissier, S., Bolatto, A., Brinks, E., Madore, B., Munoz-Mateos, J.-C., Murphy, E., Sandstrom, K., Schruba, A., Walter, F., Estimating the star formation rate at 1 kpc scales in nearby galaxies, AJ, 144, 3 (2012)ADSCrossRefGoogle Scholar
  470. Leroy, A., Walter, F., Bigiel, F., Brinks, E., de Blok, W. J. G., Madore, B., Star Formation in THINGS, the H\(_{{\rm I}}\) Nearby Galaxy Survey, ApJ, 136, 2782 (2008)Google Scholar
  471. Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., Thornley, M. D., The star formation efficiency in nearby galaxies: Measuring where gas forms stars effectively, AJ, 136, 2782 (2008)ADSCrossRefGoogle Scholar
  472. Leroy, A. K., Walter, F., Sandstrom, K., Schruba, A., Munoz-Mateos, J.-C., Bigiel, F., Bolatto, A., Brinks, E., de Blok, W. J. G., Meidt, S., Rix, H.-W., Rosolowsky, E., Schinnerer, E., Schuster, K.-F., Usero, A., Molecular gas and star formation in nearby disk galaxies, AJ, 146, 19 (2013)ADSCrossRefGoogle Scholar
  473. Lesieur, M., Turbulence in Fluids, Kluwer Academic Publishers, Dordrecht (1997)zbMATHCrossRefGoogle Scholar
  474. Leung, C. M., Radiation transport in dense interstellar dust clouds. I - Grain temperature, ApJ, 199, 340 (1975)Google Scholar
  475. Levrier, F., Le Petit, F., Hennebelle, P., Lesaffre, P., Gerin, M., Falgarone, E., UV-driven chemistry in simulations of the interstellar medium. I. Post-processed chemistry with the Meudon PDR code, A&A, 544, A22 (2012)Google Scholar
  476. Li, Z.-Y., Banerjee, R., Pudritz, R. E., Jørgensen, J. K., Shang, H., Krasnopolsky, R., Maury, A., The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 149, (2014)Google Scholar
  477. Li, Y., Klessen, R. S., Mac Low, M.-M., The Formation of Stellar Clusters in Turbulent Molecular Clouds: Effects of the Equation of State, ApJ, 592, 975 (2003)Google Scholar
  478. Li, Y., Mac Low, M.-M., Klessen, R. S., Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse, ApJ, 626, 823 (2005)Google Scholar
  479. Li, Y., Mac Low, M.-M., Klessen, R. S., Star Formation in Isolated Disk Galaxies. I. Schmidt Laws and Efficiency of Gravitational Collapse, ApJ, 639, 879 (2006)Google Scholar
  480. Li, P. S., Myers, A., McKee, C. F., Ambipolar Diffusion Heating in Turbulent Systems, ApJ, 760, 33 (2012)ADSCrossRefGoogle Scholar
  481. Li, Z.-Y., Nakamura, F., Magnetically Regulated Star Formation in Turbulent Clouds, ApJ, 609, L83 (2004)ADSCrossRefGoogle Scholar
  482. Li, Z.-Y., Nakamura, F., Cluster formation in protostellar outflow-driven turbulence, ApJ, 640, L187 (2006)ADSCrossRefGoogle Scholar
  483. Lin, C. C., Shu, F. H., On the Spiral Structure of Disk Galaxies, ApJ, 140, 646 (1964)MathSciNetADSCrossRefGoogle Scholar
  484. Lin, C. C., Yuan, C., Shu, F. H., On the Spiral Structure of Disk Galaxies. III. Comparison with Observations, ApJ, 155, 721 (1969)Google Scholar
  485. Linsky, J. L., Atomic deuterium/hydrogen in the galaxy, Space Science Reviews, 106, 49 (2003)ADSCrossRefGoogle Scholar
  486. Linsky, J. L., Draine, B. T., Moos, H. W., Jenkins, E. B., Wood, B. E., Oliveira, C., et al., What Is the Total Deuterium Abundance in the Local Galactic Disk? ApJ, 647, 1106 (2006)ADSCrossRefGoogle Scholar
  487. Linz, H., Stecklum, B., Henning, T., Hofner, P., Brandl, B., The G9.62+0.19-F hot molecular core. The infrared view on very young massive stars, A&A, 429, 903 (2005)Google Scholar
  488. Little, L. T., Gibb, A. G., Heaton, B. D., Ellison, B. N., Claude, S. M. X., The C\(_{{\rm I}}\)/CO Ratio in the Molecular Cloud G:34.3+0.2, MNRAS, 271, 649 (1994)Google Scholar
  489. Lodders, K., Solar System Abundances and Condensation Temperatures of the Elements, ApJ, 591, 1220 (2003)ADSCrossRefGoogle Scholar
  490. Longmore, S. N., Kruijssen, J. M. D., Bastian, N., Bally, J., Rathborne, J., Testi, L., Stolte, A., Dale, J., Bressert, E., Alves, J., The formation and early evolution of young massive clusters. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 291, (2014)Google Scholar
  491. Lubowich, D. A., Pasachoff, J. M., Balonek, T. J., Millar, T. J., Tremonti, C., Roberts, H., Galloway, R. P., Deuterium in the galactic centre as a result of recent infall of low-metallicity gas, Nature, 405, 1025 (2000)ADSCrossRefGoogle Scholar
  492. Lunttila, T., Padoan, P., Juvela, M., Nordlund, Å., The super-alfvénic model of molecular clouds: Predictions for mass-to-flux and turbulent-to-magnetic energy ratios, ApJ, 702, L37 (2009)ADSCrossRefGoogle Scholar
  493. Lynden-Bell, D., Kalnajs, A. J., On the generating mechanism of spiral structure, MNRAS, 157, 1 (1972)ADSCrossRefGoogle Scholar
  494. Maciel, W. J., Costa, R. D. D., Metallicity gradients in the Milky Way, in Chemical Abundances in the Universe (IAU Symposium 265), p. 317 (2010)Google Scholar
  495. Mac Low, M., The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds, ApJ, 524, 169 (1999)Google Scholar
  496. Mac Low, M.-M., Glover, S. C. O., The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models, ApJ, 746, 135 (2012)Google Scholar
  497. Mac Low, M., Klessen, R. S., Control of star formation by supersonic turbulence, Rev. Mod. Phys., 76, 125 (2004)ADSCrossRefGoogle Scholar
  498. Mac Low, M.-M., Klessen, R. S., Burkert, A., Smith, M. D., Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds, PRL, 80, 2754 (1998)Google Scholar
  499. Machida, M. N., Binary Formation in Star-forming Clouds with Various Metallicities, ApJ, 682, L1 (2008)ADSCrossRefGoogle Scholar
  500. Maio, U., Dolag, K., Ciardi, B., Tornatore, L., Metal and molecule cooling in simulations of structure formation, MNRAS, 379, 963 (2007)ADSCrossRefGoogle Scholar
  501. Maeder, A., Meynet, G., Rotating massive stars: From first stars to gamma ray bursts, Rev. Mod. Phys., 84, 25 (2012)ADSCrossRefGoogle Scholar
  502. Maret, S., Bergin, E. A., Lada, C. J., Using Chemistry to Unveil the Kinematics of Starless Cores: Complex Radial Motions in Barnard 68, ApJ, 670, L25 (2007)ADSCrossRefGoogle Scholar
  503. Marks, M., Kroupa, P., Inverse dynamical population synthesis. Constraining the initial conditions of young stellar clusters by studying their binary populations, A&A, 543, A8 (2012)ADSGoogle Scholar
  504. Marsh K. A., Griffin M. J., Palmeirim P., et al., Properties of starless and prestellar cores in Taurus revealed by Herschel: SPIRE/PACS imaging, MNRAS, 439, 3683 (2014)ADSCrossRefGoogle Scholar
  505. Martos, M. A., Cox, D. P., Magnetohydrodynamic modeling of a galactic spiral arm as a combination shock and hydraulic jump, ApJ, 509, 703 (1998)ADSCrossRefGoogle Scholar
  506. Maschberger T., On the function describing the stellar initial mass function, MNRAS, 429, 1725 (2013a)ADSCrossRefGoogle Scholar
  507. Maschberger, T., On the mass function of stars growing in a flocculent medium, MNRAS, 436, 1381 (2013b)ADSCrossRefGoogle Scholar
  508. Massey, P., Massive Stars in the Local Group: Implications for Stellar Evolution and Star Formation, ARA&A, 41, 15 (2003)ADSCrossRefGoogle Scholar
  509. Mathis, J. S., Mezger, P. G., Panagia, N., Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds, A&A, 128, 212 (1983)ADSGoogle Scholar
  510. Mathis, J. S., Rumpl, W., Nordsieck, K. H., The size distribution of interstellar grains, ApJ, 217, 425 (1977)ADSCrossRefGoogle Scholar
  511. Matzner, C. D., On the Role of Massive Stars in the Support and Destruction of Giant Molecular Clouds, ApJ, 566, 302 (2002)ADSCrossRefGoogle Scholar
  512. Matzner, C. D., McKee, C. F., Efficiencies of Low-Mass Star and Star Cluster Formation, ApJ, 545, 364 (2000)ADSCrossRefGoogle Scholar
  513. McCall, B. J., et al., Observations of H\(_{3}^{+}\) in the Diffuse Interstellar Medium, ApJ, 567, 391 (2002)ADSCrossRefGoogle Scholar
  514. McCall, B. J., Huneycutt, A. J., Saykally, R. J., Djuric, N., Dunn, G. H., Semaniak, J., et al., Dissociative recombination of rotationally cold H\(_{3}^{+}\), Phys. Rev. A, 70, 052716 (2004)ADSCrossRefGoogle Scholar
  515. McCaughrean, M., The Trapezium Cluster: A Laboratory for Star Formation, in: From Darkness to Light: Origin and Evolution of Young Stellar Clusters, vol. 243 of Astronomical Society of the Pacific Conference Series, edited by T. Montmerle, P. André, p. 449 (2001)Google Scholar
  516. McElroy, D., Walsh, C., Markwick, A. J., Cordiner, M. A., Smith, K., Millar, T. J., The UMIST database for astrochemistry 2012, A&A, 550, 36 (2013)ADSCrossRefGoogle Scholar
  517. McKee, C. F., Photoionization-regulated star formation and the structure of molecular clouds, ApJ, 345, 782 (1989)ADSCrossRefGoogle Scholar
  518. McKee, C. F., Krumholz, M. R., The Atomic-to-Molecular Transition in Galaxies. III. A New Method for Determining the Molecular Content of Primordial and Dusty Clouds, ApJ, 709, 308 (2010)Google Scholar
  519. McKee, C. F., Ostriker, E. C., Theory of Star Formation, ARA&A, 45, 565 (2007)ADSCrossRefGoogle Scholar
  520. McKee, C. F., Ostriker, J. P., A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate, ApJ, 218, 148 (1977)ADSCrossRefGoogle Scholar
  521. McKee, C. F., Williams, J. P., The Luminosity Function of OB Associations in the Galaxy, ApJ, 476, 144 (1997)Google Scholar
  522. McKee C. F., Zweibel E. G., On the virial theorem for turbulent molecular clouds, ApJ, 399, 551 (1992)ADSCrossRefGoogle Scholar
  523. Mellon, R. R., Li, Z.-Y., Magnetic Braking and Protostellar Disk Formation: Ambipolar Diffusion, ApJ, 698, 922 (2009)ADSCrossRefGoogle Scholar
  524. Menten, K. M., Reid, M. J., Forbrich, J., Brunthaler, A., The distance to the Orion Nebula, A&A, 474, 515 (2007)ADSCrossRefGoogle Scholar
  525. Mestel L., Spitzer L., Star formation in magnetic dust clouds, MNRAS, 116, 503 (1956)MathSciNetADSCrossRefzbMATHGoogle Scholar
  526. Meyerdierks, H., Heithausen, A., Reif, K., The North Celestial Pole Loop, A&A, 245, 247 (1991)ADSGoogle Scholar
  527. Meynet, G., Physics of rotation in stellar models, The Rotation of Sun and Stars, Lecture Notes in Physics, 765, 139 (2009)ADSCrossRefGoogle Scholar
  528. Micic, M., Glover, S. C. O., Federrath, C., Klessen, R. S., Modelling H\(_2\) formation in the turbulent interstellar medium: solenoidal versus compressive turbulent forcing, MNRAS, 421, 2531 (2012)ADSCrossRefGoogle Scholar
  529. Micic, M., Glover, S. C. O., Banerjee, R., Klessen, R. S., Cloud formation in colliding flows: influence of the choice of cooling function, MNRAS, 432, 626 (2013)ADSCrossRefGoogle Scholar
  530. Mierkiewicz, E. J., Reynolds, R. J., Roesler, F. L., Harlander, J. M., Jaehnig, K. P., Detection of Diffuse Interstellar [O\(_{{\rm II}}\)] Emission from the Milky Way Using Spatial Heterodyne Spectroscopy, ApJ, 650, L63 (2006)Google Scholar
  531. Miller, G. E., Scalo, J., The Initial Mass Function and the Stellar Birthrate in the Solar Neighborhood, ApJS, 41, 513 (1979)ADSCrossRefGoogle Scholar
  532. Moffat, A. F. J., Corcoran, M. F., Stevens, I. R., Skalkowski, G., Marchenko, S. V., Mücke, A., Ptak, A., Koribalski, B. S., Brenneman, L., Mushotzky, R., Pittard, J. M., Pollock, A. M. T., Brandner, W., Galactic Starburst NGC 3603 from X-Rays to Radio, ApJ, 573, 191 (2002)ADSCrossRefGoogle Scholar
  533. Molina, F. Z., Glover, S. C. O., Federrath, C., Klessen, R. S., The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas, MNRAS, 423, 2680 (2012)CrossRefGoogle Scholar
  534. Molinari, S., et al., The Milky Way as a Star Formation Engine. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 125, (2014)Google Scholar
  535. Morris, M., Serabyn, E., The Galactic Center Environment, ARA&A, 34, 645 (1996)ADSCrossRefGoogle Scholar
  536. Motte, F., Andre, P., Neri, R., The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping, A&A, 336, 150 (1998)ADSGoogle Scholar
  537. Motte, F., Bontemps, S., Schneider, N., Schilke, P., Menten, K. M., Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation, in: Massive Star Formation: Observations Confront Theory, vol. 387 of Astronomical Society of the Pacific Conference Series, edited by H. Beuther, H. Linz, T. Henning, p. 22 (2008)Google Scholar
  538. Motte, F., Nguyen Luong, Q., Schneider, N., Heitsch, F., Glover, S., Carlhoff, P., Hill, T., Bontemps, S., Schilke, P., Louvet, F., Hennemann, M., Didelon, P., Beuther, H., The formation of the W43 complex: constraining its atomic-to-molecular transition and searching for colliding clouds, A&A, 571, A35 (2014)Google Scholar
  539. Mouschovias T. C., Static Equilibria of the Interstellar Gas in the Presence of Magnetic and Gravitational Fields: Large-Scale Condensations, ApJ, 192, 37 (1974)ADSCrossRefGoogle Scholar
  540. Mouschovias, T. C., Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: Star formation. II - Results, ApJ, 207, 141 (1976)Google Scholar
  541. Mouschovias, T. C., Ambipolar diffusion in interstellar clouds - A new solution, ApJ, 228, 475 (1979)ADSCrossRefGoogle Scholar
  542. Mouschovias, T. C., Cosmic Magnetism and the Basic Physics of the Early Stages of Star Formation, in: NATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, edited by C. J. Lada, N. D. Kylafis, p. 61 (1991a)Google Scholar
  543. Mouschovias, T. C., Single-Stage Fragmentation and a Modern Theory of Star Formation, in: NATO ASIC Proc. 342: The Physics of Star Formation and Early Stellar Evolution, edited by C. J. Lada, N. D. Kylafis, p. 449 (1991b)Google Scholar
  544. Mouschovias, T. Ch., Kunz, M. W., Christie, D. A., Formation of interstellar clouds: Parker instability with phase transitions, MNRAS, 397, 14 (2009)ADSCrossRefGoogle Scholar
  545. Mouschovias, T. C., Paleologou, E. V., Ambipolar diffusion in interstellar clouds - Time-dependent solutions in one spatial dimension, ApJ, 246, 48 (1981)ADSCrossRefGoogle Scholar
  546. Mouschovias T. C., Shu, F. H., Woodward, P. R., On the Formation of Interstellar Cloud Complexes, OB Associations and Giant H\(_{{\rm II}}\) Regions, A&A, 33, 73 (1974)Google Scholar
  547. Mouschovias T. C., Spitzer L., Jr., Note on the collapse of magnetic interstellar clouds, ApJ, 210, 326 (1976)ADSCrossRefGoogle Scholar
  548. Mundt, R., Buehrke, T., Solf, J., Ray, T. P., Raga, A. C., Optical jets and outflows in the HL Tauri region, A&A, 232, 37 (1990)ADSGoogle Scholar
  549. Mundt, R., Ray, T. P., Raga, A. C., Collimation of stellar jets - constraints from the observed spatial structure - part two - observational results, A&A, 252, 740 (1991)ADSGoogle Scholar
  550. Myers, P. C., Dense Cores in Dark Clouds. III - Subsonic Turbulence, ApJ, 270, 105 (1983)Google Scholar
  551. Naab, T., Ostriker, J. P., A simple model for the evolution of disc galaxies: the milky way, MNRAS, 366, 899 (2006)ADSCrossRefGoogle Scholar
  552. Nakamura, F., Li, Z.-Y., Protostellar Turbulence Driven by Collimated Outflows, ApJ, 662, 395 (2007)ADSCrossRefGoogle Scholar
  553. Nakamura, F., Li, Z.-Y., Magnetically regulated star formation in three dimensions: The case of the Taurus molecular cloud complex, ApJ, 687, 354 (2008)ADSCrossRefGoogle Scholar
  554. Nelson, R. P., Langer, W. D., The Dynamics of Low-Mass Molecular Clouds in External Radiation Fields, ApJ, 482, 796 (1997)ADSCrossRefGoogle Scholar
  555. Nelson, R. P., Langer, W. D., On the Stability and Evolution of Isolated BOK Globules, ApJ, 524, 923 (1999)ADSCrossRefGoogle Scholar
  556. Neufeld, D. A., Kaufman, M. J., Radiative Cooling of Warm Molecular Gas, ApJ, 418, 263 (1993)ADSCrossRefGoogle Scholar
  557. Neufeld, D. A., Lepp, S., Melnick, G. J., Thermal Balance in Dense Molecular Clouds: Radiative Cooling Rates and Emission-Line Luminosities, ApJS, 100, 132 (1995)ADSCrossRefGoogle Scholar
  558. Nisini, B., Benedettini, M., Codella, C., Giannini, T., Liseau, R., Neufeld, D., et al., Water cooling of shocks in protostellar outflows. Herschel-PACS map of L1157, A&A, 518, L120 (2010)Google Scholar
  559. Norman, C. A., Ferrara, A., The turbulent interstellar medium: Generalizing to a scale-dependent phase continuum, ApJ, 467, 280 (1996)ADSCrossRefGoogle Scholar
  560. Norman, C., Silk, J., Clumpy molecular clouds - A dynamic model self-consistently regulated by T Tauri star formation, ApJ, 238, 158 (1980)ADSCrossRefGoogle Scholar
  561. Ntormousi, E., Burkert, A., Fierlinger, K., Heitsch, F., Formation of Cold Filamentary Structure from Wind-blown Superbubbles, ApJ, 731, 13 (2011)ADSCrossRefGoogle Scholar
  562. Nugis, T., Lamers, H. J. G. L. M., Mass-loss rates of wolf-rayet stars as a function of stellar parameters, A&A, 360, 227 (2000)ADSGoogle Scholar
  563. Nutter, D., Ward-Thompson, D., A SCUBA survey of Orion - the low-mass end of the core mass function, MNRAS, 374, 1413 (2007)ADSCrossRefGoogle Scholar
  564. Oey, M. S., Clarke, C. J., Statistical Confirmation of a Stellar Upper Mass Limit, ApJ, 620, L43 (2005)ADSCrossRefGoogle Scholar
  565. Offner, S. S. R., Bisbas, T. G., Viti, S., Bell, T. A., Modeling the atomic-to-molecular transition and chemical distributions of turbulent star-forming clouds, ApJ, 770, 49 (2013)ADSCrossRefGoogle Scholar
  566. Offner, S. S. R., Clark, P. C., Hennebelle, P., Bastian, N., Bate, M. R., Hopkins, P., Moraux, E., Whitworth, A., The Origin and Universality of the Stellar Initial Mass Function. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 53, (2014)Google Scholar
  567. Offner, S. S. R., Klein, R. I., McKee, C. F., Driven and Decaying Turbulence Simulations of Low-Mass Star Formation: From Clumps to Cores to Protostars, ApJ, 686, 1174 (2008)ADSCrossRefGoogle Scholar
  568. Øksendal, B., Stochastic Differential Equations, 5\(^{th}\) edition, Springer Verlag, Heidelberg, New York (2000)Google Scholar
  569. Onishi, T., Mizuno, A., Kawamura, A., Ogawa, H., Fukui, Y., A C\(^{18}\)O Survey of Dense Cloud Cores in Taurus: Star Formation, ApJ, 502, 296 (1998)ADSCrossRefGoogle Scholar
  570. Oort, J. H., Outline of a theory on the origin and acceleration of interstellar clouds and O associations, Bull. Astron. Inst. Netherlands, 12, 177 (1954)ADSGoogle Scholar
  571. Oppenheimer, B. D., Schaye, J., Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background, MNRAS, 434, 1043 (2013)ADSCrossRefGoogle Scholar
  572. Ossenkopf, V., The Sobolev approximation in molecular clouds, New. Astron. 2, 365 (1997)Google Scholar
  573. Ossenkopf, V., Molecular line emission from turbulent clouds, A&A, 391, 295 (2002)ADSCrossRefGoogle Scholar
  574. Ossenkopf, V., Henning, Th., Dust opacities for protostellar cores, A&A, 291, 943 (1994)ADSGoogle Scholar
  575. Ossenkopf, V., Mac Low, M.-M., Turbulent velocity structure in molecular clouds, A&A, 390, 307 (2002)Google Scholar
  576. Osterbrock, D. E., Astrophysics of gaseous nebulae and active galactic nuclei, University Science Books (1989)Google Scholar
  577. Ostriker, E. C., Stone, J. M., Gammie, C. F., Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models, ApJ, 546, 980 (2001)Google Scholar
  578. Ostriker, J. P., Tinsley, B. M., Is deuterium of cosmological or of galactic origin?, ApJ, 201, L51 (1975)ADSCrossRefGoogle Scholar
  579. Ouyed, R., Clarke, D. A., Pudritz, R. E., Three-dimensional Simulations of Jets from Keplerian Disks: Self-regulatory Stability, ApJ, 582, 292 (2003)ADSCrossRefGoogle Scholar
  580. Ouyed, R., Pudritz, R. E., Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models, ApJ, 482, 712 (1997)Google Scholar
  581. Padoan, P., Federrath, C., Chabrier, G., Evans, N. J., Johnstone, D., Jørgensen, J. K., McKee, C. F., Nordlund, Å., The star formation rate of molecular clouds. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 77, (2014)Google Scholar
  582. Padoan, P., Juvela, M., Goodman, A. A., Nordlund, Å., The Turbulent Shock Origin of Proto-Stellar Cores, ApJ, 553, 227 (2001)ADSCrossRefGoogle Scholar
  583. Padoan, P., Nordlund, A., Jones, B. J. T., The universality of the stellar initial mass function, MNRAS, 288, 145 (1997)ADSCrossRefGoogle Scholar
  584. Padoan, P., Nordlund, Å., A Super-Alfvénic Model of Dark Clouds, ApJ, 526, 279 (1999)ADSCrossRefGoogle Scholar
  585. Padoan, P., Nordlund, Å., The Stellar Initial Mass Function from Turbulent Fragmentation, ApJ, 576, 870 (2002)ADSCrossRefGoogle Scholar
  586. Padoan, P., Nordlund, Å., The Star Formation Rate of Supersonic Magnetohydrodynamic Turbulence, ApJ, 730, 40 (2011)ADSCrossRefGoogle Scholar
  587. Padoan, P., Nordlund, Å., Kritsuk, A. G., Norman, M. L., Li, P. S., Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation, ApJ, 661, 972 (2007)ADSCrossRefGoogle Scholar
  588. Padoan, P., Scalo, J., Confinement-driven Spatial Variations in the Cosmic-Ray Flux, ApJ, 624, L97 (2005)ADSCrossRefGoogle Scholar
  589. Padoan, P., Zweibel, E., Nordlund, Å., Ambipolar Drift Heating in Turbulent Molecular Clouds, ApJ, 540, 332 (2000)ADSCrossRefGoogle Scholar
  590. Padovani, M., Galli, D., Glassgold, A. E., Cosmic-ray ionization of molecular clouds, A&A, 501, 619 (2009)ADSCrossRefGoogle Scholar
  591. Palla, F., Stahler, S. W., Star Formation in the Orion Nebula Cluster, ApJ, 525, 772 (1999)ADSCrossRefGoogle Scholar
  592. Pan, L., Padoan, P., The Temperature of Interstellar Clouds from Turbulent Heating, ApJ, 692, 594 (2009)ADSCrossRefGoogle Scholar
  593. Papadopoulos, P. P., A Cosmic-ray-dominated Interstellar Medium in Ultra Luminous Infrared Galaxies: New Initial Conditions for Star Formation, ApJ, 720, 226 (2010)ADSCrossRefGoogle Scholar
  594. Parker, E. N., The Dynamical State of the Interstellar Gas and Field, ApJ, 145, 811 (1966)ADSCrossRefGoogle Scholar
  595. Parravano, A., Hollenbach, D. J., McKee, C. F., Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium, ApJ, 584, 797 (2003)ADSCrossRefGoogle Scholar
  596. Passot, T., Vázquez-Semadeni, E., Density probability distribution in one-dimensional polytropic gas dynamics, PRE, 58, 4501 (1998)ADSCrossRefGoogle Scholar
  597. Pauldrach, A. W. A., Puls, J., Radiation-driven winds of hot stars. VIII - The bistable wind of the luminous blue variable P Cygni (B1 Ia/+/), A&A, 237, 409 (1990)Google Scholar
  598. Pavlyuchenkov, Y., Wiebe, D., Launhardt, R., Henning, T., CB 17: Inferring the Dynamical History of a Prestellar Core with Chemodynamical Models, ApJ, 645, 1212 (2006)ADSCrossRefGoogle Scholar
  599. Peek, J. E. G., Hitting the bull’s-eye: The radial profile of accretion and star formation in the Milky Way, ApJ, 698, 1429 (2009)ADSCrossRefGoogle Scholar
  600. Persi, P., Marenzi, A. R., Olofsson, G., Kaas, A. A., Nordh, L., Huldtgren, M., Abergel, A., André, P., Bontemps, S., Boulanger, F., Burggdorf, M., Casali, M. M., Cesarsky, C. J., Copet, E., Davies, J., Falgarone, E., Montmerle, T., Perault, M., Prusti, T., Puget, J. L., Sibille, F., ISOCAM observations of the Chamaeleon I dark cloud, A&A, 357, 219 (2000)ADSGoogle Scholar
  601. Peters, T., Banerjee, R., Klessen, R. S., Mac Low, M., The Interplay of Magnetic Fields, Fragmentation, and Ionization Feedback in High-mass Star Formation, ApJ, 729, 72 (2011)Google Scholar
  602. Peters, T., Banerjee, R., Klessen, R. S., Mac Low, M.-M., Galván-Madrid, R., Keto, E. R., H\(_{{\rm II}}\) regions: Witnesses to massive star formation, ApJ, 711, 1017 (2010a)Google Scholar
  603. Peters, T., Klessen, R. S., Mac Low, M., Banerjee, R., Limiting Accretion onto Massive Stars by Fragmentation-induced Starvation, ApJ, 725, 134 (2010b)Google Scholar
  604. Peters, T., Mac Low, M.-M., Banerjee, R., Klessen, R. S., Dullemond, C. P., Understanding spatial and spectral morphologies of ultracompact H\(_{{\rm II}}\) regions, ApJ, 719, 831 (2010c)Google Scholar
  605. Pety J., Schinnerer E., Leroy A. K., Hughes A., Meidt S. E., Colombo D., Dumas G., García-Burillo S., Schuster K. F., Kramer C., Dobbs C. L., Thompson T. A., The Plateau de Bure + 30 m Arcsecond Whirlpool Survey Reveals a Thick Disk of Diffuse Molecular Gas in the M51 Galaxy, ApJ, 779, 43 (2013)ADSCrossRefGoogle Scholar
  606. Pflamm-Altenburg J., Kroupa P., A highly abnormal massive star mass function in the Orion Nebula cluster and the dynamical decay of trapezium systems, MNRAS, 373, 295 (2006)ADSCrossRefGoogle Scholar
  607. Phillips, J. P., Rotation in molecular clouds, A&AS, 134, 241 (1999)ADSCrossRefGoogle Scholar
  608. Pineda, J. L., Langer, W. D., Velusamy, T., Goldsmith, P. F., A Herschel [C\(_{{\rm II}}\)] Galactic plane survey. I. The global distribution of ISM gas components, A&A, 554, 103 (2013)Google Scholar
  609. Piontek, R. A., Ostriker, E. C., Thermal and Magnetorotational Instability in the Interstellar Medium: Two-dimensional Numerical Simulations, ApJ, 601, 905 (2004)ADSCrossRefGoogle Scholar
  610. Piontek, R. A., Ostriker, E. C., Saturated-state turbulence and structure from thermal and magnetorotational instability in the ISM: Three-dimensional numerical simulations, ApJ, 629, 849 (2005)ADSCrossRefGoogle Scholar
  611. Planck Collaboration; Abergel, A., Ade, P. A. R., Aghanim, N., Alina, D., Alves, M. I. R., Aniano, G., et al., Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies, A&A, 566, A55 (2014)Google Scholar
  612. Pon, A., Johnstone, D., Kaufman, M. J., Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds, ApJ, 748, 25 (2012)ADSCrossRefGoogle Scholar
  613. Pope, S. B., Turbulent Flows, Cambridge University Press (2000)Google Scholar
  614. Poppel, W., The Gould Belt System and the Local Interstellar Medium, Fundamentals of Cosmic Physics, 18, 1 (1997)Google Scholar
  615. Portegies Zwart, S. F., McMillan, S. L. W., Gieles, M., Young Massive Star Clusters, ARA&A, 48, 431 (2010)Google Scholar
  616. Prasad, S. S., Tarafdar, S. P., UV radiation field inside dense clouds - Its possible existence and chemical implications, ApJ, 267, 603 (1983)ADSCrossRefGoogle Scholar
  617. Preibisch, T., Zinnecker, H., The History of Low-Mass Star Formation in the Upper Scorpius OB Association, AJ, 117, 2381 (1999)ADSCrossRefGoogle Scholar
  618. Press, W. H., Schechter, P., Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation, ApJ, 187, 425 (1974)ADSCrossRefGoogle Scholar
  619. Price, D. J., Bate, M. R., The effect of magnetic fields on the formation of circumstellar discs around young stars, Astrophys. Space Sci., 311, 75 (2007a)ADSCrossRefGoogle Scholar
  620. Price, D. J., Bate, M. R., The impact of magnetic fields on single and binary star formation, MNRAS, 377, 77 (2007b)ADSCrossRefGoogle Scholar
  621. Price, D. J., Bate, M. R., The effect of magnetic fields on star cluster formation, MNRAS, 385, 1820 (2008)ADSCrossRefGoogle Scholar
  622. Pringle, J. E., Allen, R. J., Lubow, S. H., The Formation of Molecular Clouds, MNRAS, 327, 663 (2001)ADSCrossRefGoogle Scholar
  623. Prochaska, J. X., Wolfe, A. M., On the (non)evolution of H\(_{{\rm I}}\) gas in galaxies over cosmic time, ApJ, 696, 1543 (2009)Google Scholar
  624. Prodanović, T., Steigman, G., Fields, B. D., The deuterium abundance in the local interstellar medium, MNRAS, 406, 1108 (2010)ADSGoogle Scholar
  625. Pudritz, R. E., Ouyed, R., Fendt, C., Brandenburg, A., Disk Winds, Jets, and Outflows: Theoretical and Computational Foundations, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 277 (2007)Google Scholar
  626. Puls, J., Kudritzki, R.-P., Herrero, A., Pauldrach, A. W. A., Haser, S. M., Lennon, D. J., Gabler, R., Voels, S. A., Vilchez, J. M., Wachter, S., Feldmeier, A., O-star mass-loss and wind momentum rates in the galaxy and the magellanic clouds observations and theoretical predictions., A&A, 305, 171 (1996)Google Scholar
  627. Putman, M. E., Potential condensed fuel for the Milky Way, ApJ, 645, 1164 (2006)ADSCrossRefGoogle Scholar
  628. Rafikov, R. R., The local axisymmetric instability criterion in a thin, rotating, multicomponent disc, MNRAS, 323, 445 (2001)ADSCrossRefGoogle Scholar
  629. Ragan S., Henning T., Krause O., et al., The Earliest Phases of Star Formation (EPoS): a Herschel key program. The precursors to high-mass stars and clusters, A&A, 547, A49 (2012)Google Scholar
  630. Ragan S. E., Henning T., Beuther H., APEX/SABOCA observations of small-scale structure of infrared-dark clouds. I. Early evolutionary stages of star-forming cores, A&A, 559, A79 (2013)Google Scholar
  631. Rauw, G., Crowther, P. A., De Becker, M., Gosset, E., Nazé, Y., Sana, H., van der Hucht, K. A., Vreux, J.-M., Williams, P. M., The spectrum of the very massive binary system WR 20a (WN6ha + WN6ha): Fundamental parameters and wind interactions, A&A, 432, 985 (2005)ADSCrossRefGoogle Scholar
  632. Rees, M. J., Opacity-limited hierarchical fragmentation and the masses of protostars, MNRAS, 176, 483 (1976)Google Scholar
  633. Reipurth B., Clarke C. J., Boss A. P., Goodwin S. P., Rodriguez L. F., Stassun K. G., Tokovinin A., Zinnecker H., Multiplicity in Early Stellar Evolution. In: Protostars and Planets VI, edited by Beuther, H., Klessen, R. S., Dullemond, C. P., Henning, Th., University of Arizona Press, 267, (2014)Google Scholar
  634. Reynolds, R. J., The column density and scale height of free electrons in the galactic disk, ApJ, 339, L29 (1989)ADSCrossRefGoogle Scholar
  635. Reynolds, R. J., Scherb, F., Roesler, F. L., Observations of Diffuse Galactic H\(\alpha \)] emission, ApJ, 185, 869 (1973)Google Scholar
  636. Richardson, L. F., The Supply of Energy from and to Atmospheric Eddies, Royal Society of London Proceedings Series A, 97, 354 (1920)ADSCrossRefGoogle Scholar
  637. Richings, A. J., Schaye, J., Oppenheimer, B. D., Non-equilibrium chemistry and cooling in the diffuse interstellar medium I: Optically thin regime, MNRAS, 440, 3349 (2014)ADSCrossRefGoogle Scholar
  638. Rix, H.-W., Bovy, J., The Milky Way’s Stellar Disk. Mapping and Modeling the Galactic Disk, A&A Rev., 21, 61 (2013)Google Scholar
  639. Roberts, W. W., Large-Scale Shock Formation in Spiral Galaxies and its Implications on Star Formation, ApJ, 158, 123 (1969)ADSCrossRefGoogle Scholar
  640. Rolleston, W. R. J., Smartt, S. J., Dufton, P. L., Ryans, R. S. I., The Galactic metallicity gradient, A&A, 363, 537 (2000)ADSGoogle Scholar
  641. Roman-Duval, J., Federrath, C., Brunt, C., Heyer, M., Jackson, J., Klessen, R. S., The turbulence spectrum of molecular clouds in the galactic ring survey: A density-dependent principal component analysis calibration, ApJ, 740, 120 (2011)ADSCrossRefGoogle Scholar
  642. Roser, J. E., Swords, S., Vidali, G., Manicò, G., Pirronello, V., Measurement of the kinetic energy of hydrogen molecules from amorphous water ice, ApJ, 596, L55 (2003)ADSCrossRefGoogle Scholar
  643. Rosolowsky, E. W., Pineda, J. E., Foster, J. B., Borkin, M. A., Kauffmann, J., Caselli, P., Myers, P. C., Goodman, A. A., An Ammonia Spectral Atlas of Dense Cores in Perseus, ApJS, 175, 509 (2008)ADSCrossRefGoogle Scholar
  644. Roueff, E., Zeippen, C. J., Rotational excitation of HD molecules by He atoms, A&A, 343, 1005 (1999)ADSGoogle Scholar
  645. Roy, N., Kanekar, N., Chengalur, J. N., The temperature of the diffuse H\(_{{\rm I}}\) 21 cm absorption spectra, MNRAS, 436, 2366 (2013)Google Scholar
  646. Rudolph, A. L., Fich, M., Bell, G. R., Norsen, T., Simpson, J. P., Haas, M. R., Erickson, E. F., Abundance Gradients in the Galaxy, ApJS, 162, 346 (2006)ADSCrossRefGoogle Scholar
  647. Ruffert, M., Arnett, D., Three-Dimensional Hydrodynamic Bondi-Hoyle Accretion. 2: Homogeneous Medium at mach 3 with \(\gamma = \)5/3, ApJ, 427, 351 (1994)Google Scholar
  648. Rybicki, G. B., Lightman, A. P., Radiative Processes in Astrophysics, Wiley-VCH (1986)Google Scholar
  649. Salpeter, E. E., The Luminosity Function and Stellar Evolution., ApJ, 121, 161 (1955)Google Scholar
  650. Sandstrom, K. M., Peek, J. E. G., Bower, G. C., Bolatto, A. D., Plambeck, R. L., A Parallactic Distance of \(389^{+24}_{-21}\) Parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations, ApJ, 667, 1161 (2007)ADSCrossRefGoogle Scholar
  651. Savage, B. D., Bohlin, R. C., Drake, J. F., Budich, W., A survey of interstellar molecular hydrogen, ApJ, 216, 291 (1977)ADSCrossRefGoogle Scholar
  652. Savage, B. D., Sembach, K. R., Interstellar Abundances from Absorption-Line Observations with the Hubble Space Telescope, ARA&A, 34, 279 (1996)ADSCrossRefGoogle Scholar
  653. Scalo, J., The Stellar Initial Mass Function, Fund. Cosm. Phys., 11, 1 (1986)ADSGoogle Scholar
  654. Scalo, J., Elmegreen, B. G., Interstellar Turbulence II: Implications and Effects, ARA&A, 42, 275 (2004)ADSCrossRefGoogle Scholar
  655. Schekochihin, A. A., Cowley, S. C., Maron, J. L., McWilliams, J. C., Critical magnetic prandtl number for small-scale dynamo, PRL, 92, 54502 (2004a)ADSCrossRefGoogle Scholar
  656. Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L., McWilliams, J. C., Simulations of the small-scale turbulent dynamo, ApJ, 612, 276 (2004b)ADSCrossRefGoogle Scholar
  657. Schilke, P., Keene, J., Le Bourlot, J., Pineau des Forêts, G., Roueff, E., Atomic carbon in a dark cloud: TMC-1, A&A, 294, L17 (1995)Google Scholar
  658. Schmeja, S., Klessen, R. S., Protostellar mass accretion rates from gravoturbulent fragmentation, A&A, 419, 405 (2004)ADSCrossRefGoogle Scholar
  659. Schmidt, W., Federrath, C., Hupp, M., Kern, S., Niemeyer, J. C., Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas, A&A, 494, 127 (2009)Google Scholar
  660. Schneider, R., Omukai, K., Metals, dust and the cosmic microwave background: fragmentation of high-redshift star-forming clouds, MNRAS, 402, 429 (2010)ADSCrossRefGoogle Scholar
  661. Schneider N., Csengeri T., Hennemann M., et al., Cluster-formation in the Rosette molecular cloud at the junctions of filaments, A&A, 540, L11 (2012)ADSCrossRefGoogle Scholar
  662. Schneider, N., et al., What Determines the Density Structure of Molecular Clouds? A Case Study of Orion B with Herschel, ApJ, 766, L17 (2013)Google Scholar
  663. Schneider N., Ossenkopf V., Csengeri T., et al., Understanding star formation in molecular clouds I. A universal probability distribution of column densities?, A&A, 575, A79 (2015)Google Scholar
  664. Schober, J., Schleicher, D., Bovino, S., Klessen, R. S., Small-scale dynamo at low magnetic Prandtl numbers, PRE, 86, 66412 (2012a)ADSCrossRefGoogle Scholar
  665. Schober, J., Schleicher, D., Federrath, C., Klessen, R., Banerjee, R., Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers, PRE, 85, 26303 (2012b)ADSCrossRefGoogle Scholar
  666. Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., Black, J. H., An atomic and molecular database for analysis of submillimetre line observations, A&A, 432, 369 (2005)ADSCrossRefGoogle Scholar
  667. Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R., Jaquet, R., Excitation of the fine-structure transitions of C in collisions with ortho- and para-H\(_{2}\), J. Phys. B, 24, 2487 (1991)ADSCrossRefGoogle Scholar
  668. Schruba, A., Leroy, A. K., Walter, F., Bigiel, F., Brins, E., de Blok, W. J. G., Dumas, G., Kramer, C., Rosolowsky, E., Sandstrom, K., Schuster, K., Usero, A., Weiss, A., Wiesemeyer, H., A Molecular Star Formation Law in the Atomic-gas-dominated Regime in Nearby Galaxies, AJ, 142, 37 (2011)ADSCrossRefGoogle Scholar
  669. Seifried, D., Schmidt, W., Niemeyer, J. C., Forced turbulence in thermally bistable gas: a parameter study, A&A, 526, A14 (2011)ADSCrossRefzbMATHGoogle Scholar
  670. Seifried D., Banerjee R., Klessen R. S., Duffin D., Pudritz R. E., Magnetic fields during the early stages of massive star formation - I. Accretion and disc evolution, MNRAS, 417, 1054 (2011)CrossRefGoogle Scholar
  671. Seifried D., Banerjee R., Pudritz R. E., Klessen R. S., Disc formation in turbulent massive cores: circumventing the magnetic braking catastrophe, MNRAS, 423, L40 (2012a)ADSCrossRefGoogle Scholar
  672. Seifried D., Pudritz R. E., Banerjee R., Duffin D., Klessen R. S., Magnetic fields during the early stages of massive star formation - II. A generalized outflow criterion, MNRAS, 422, 347 (2012b)Google Scholar
  673. Seifried D., Banerjee R., Pudritz R. E., Klessen R. S., Turbulence-induced disc formation in strongly magnetized cloud cores, MNRAS, 432, 3320 (2013)ADSCrossRefGoogle Scholar
  674. Sellwood, J. A., Balbus, S. A., Differential rotation and turbulence in extended H\(_{{\rm I}}\) disks, ApJ, 511, 660 (1999)Google Scholar
  675. Sembach, K. R., Howk, J. C., Ryans, R. S. I., Keenan, F. P., Modeling the Warm Ionized Interstellar Medium and Its Impact on Elemental Abundance Studies, ApJ, 528, 310 (2000)ADSCrossRefGoogle Scholar
  676. Selman, F. J., Melnick, J., The Scale-Free Character of the Cluster Mass Function and the Universality of the Stellar Initial Mass Function, ApJ, 689, 816 (2008)ADSCrossRefGoogle Scholar
  677. Sheffer, Y., Rogers, M., Federman, S. R., Abel, N. P., Gredel, R., Lambert, D. L., Shaw, G., Ultraviolet Survey of CO and H\(_2\) in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships, ApJ, 687, 1075 (2008)ADSCrossRefGoogle Scholar
  678. Shetty, R., Beaumont, C. N., Burton, M. G., Kelly, B. C., Klessen, R. S., The linewidth-size relationship in the dense interstellar medium of the central molecular zone, MNRAS, 425, 720 (2012)ADSCrossRefGoogle Scholar
  679. Shetty R., Clark P. C., Klessen R. S., Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas, MNRAS, 442, 2208 (2014)ADSCrossRefGoogle Scholar
  680. Shetty, R., Kauffmann, J., Schnee, S., Goodman, A. A., The Effect of Noise on the Dust Temperature-Spectral Index Correlation, ApJ, 696, 676 (2009a)ADSCrossRefGoogle Scholar
  681. Shetty, R., Kauffmann, J., Schnee, S., Goodman, A. A., Ercolano, B., The Effect of Line-of-Sight Temperature Variation and Noise on Dust Continuum Observations, ApJ, 696, 2234 (2009b)ADSCrossRefGoogle Scholar
  682. Shetty, R., Kelly, B. C., Bigiel, F., Evidence for a non-universal Kennicutt-Schmidt relationship using hierarchical Bayesian linear regression, MNRAS, 430, 288 (2013)ADSCrossRefGoogle Scholar
  683. Shetty, R., Kelly, B. C., Rahman, N., Bigiel, F., Bolatto, A. D., Clark, P. C., Klessen, R. S., Konstandin, L. K., Indications of a sub-linear and non-universal Kennicutt-Schmidt relationship, MNRAS, 437, L61 (2014)ADSCrossRefGoogle Scholar
  684. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S., Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model, ApJ, 429, 781 (1994)Google Scholar
  685. Shu, F. H., Adams, F. C., Lizano, S., Star formation in molecular clouds - Observation and theory, ARA&A, 25, 23 (1987)ADSCrossRefGoogle Scholar
  686. Shu, F. H., Najita, J. R., Shang, H., Li, Z.-Y., X-Winds Theory and Observations, Protostars and Planets IV, edited by V. Mannings, A. P. Boss, S. S. Russell, p. 789 (2000)Google Scholar
  687. Simon, R., Schneider, N., Stutzki, J., Güsten, R., Graf, U. U., Hartogh, P., Guan, X., Staguhn, J. G., Benford, D. J., SOFIA observations of S106: dynamics of the warm gas, A&A, 542, L12 (2012)ADSCrossRefGoogle Scholar
  688. Smith, M. C., Ruchti, G. R., Helmi, A., Wyse, R. F. G., Fulbright, J. P., Freeman, K. C., Navarro, J. F., Seabroke, G. M., Steinmetz, M., Williams, M., Bienaymé, O., Binney, J., Bland-Hawthorn, J., Dehnen, W., Gibson, B. K., Gilmore, G., Grebel, E. K., Munari, U., Parker, Q. A., Scholz, R.-D., Siebert, A., Watson, F. G., Zwitter, T., The RAVE survey: constraining the local galactic escape speed, MNRAS, 379, 755 (2007)ADSCrossRefGoogle Scholar
  689. Smith, B. D., Turk, M. J., Sigurdsson, S., O’Shea, B. W., Norman, M. L., Three Modes of Metal-Enriched Star Formation in the Early Universe, ApJ, 691, 441 (2009)ADSCrossRefGoogle Scholar
  690. Smith, R. J., Clark, P. C., Bonnell, I. A., The structure of molecular clouds and the universality of the clump mass function, MNRAS, 391, 1091 (2008)ADSCrossRefGoogle Scholar
  691. Smith R. J., Glover S. C. O., Clark P. C., Klessen R. S., Springel V., CO-dark gas and molecular filaments in Milky Way-type galaxies, MNRAS, 441, 1628 (2014)ADSCrossRefGoogle Scholar
  692. Smith R. J., Shetty R., Beuther H., Klessen R. S., Bonnell I. A., Line Profiles of Cores within Clusters. II. Signatures of Dynamical Collapse during High-mass Star Formation, ApJ, 771, 24 (2013)Google Scholar
  693. Smith R. J., Shetty R., Stutz A. M., Klessen R. S., Line Profiles of Cores within Clusters. I. The Anatomy of a Filament, ApJ, 750, 64 (2012)Google Scholar
  694. Snell, R. L., Howe, J. E., Ashby, M. L. N., Bergin, E. B., Chin, G., Erickson, N. R., et al., Submillimeter Wave Astronomy Satellite Observations of Extended Water Emission in Orion, ApJ, 539, L93 (2000)ADSCrossRefGoogle Scholar
  695. Snow, T. P., McCall, B. J., Diffuse Atomic and Molecular Clouds, ARA&A, 44, 367 (2006)ADSCrossRefGoogle Scholar
  696. Snowden, S. L., Egger, R., Freyberg, M. J., McCammon, D., Plucinsky, P. P., Sanders, W. T., Schmitt, J. H. M. M., Trümper, J., Voges, W., ROSAT Survey Diffuse X-Ray Background Maps. II, ApJ, 485, 125 (1997)ADSCrossRefGoogle Scholar
  697. Sobolev, V. V., The Diffusion of L\(\alpha \) Radiation in Nebulae and Stellar Envelopes, Sov. Astron., 1, 678 (1957)ADSGoogle Scholar
  698. Sofia, U. J., Interstellar Abundances and Depletions, in: Astrophysics of Dust (ASP Conf. Series, Vol. 309), edited by Witt, A. N., Clayton, G. C., Draine, B. T., p. 393 (2004)Google Scholar
  699. Solomon, P. M., Rivolo, A. R., Barrett, J., Yahil, A., Mass, luminosity, and line width relations of Galactic molecular clouds, ApJ, 319, 730 (1987)ADSCrossRefGoogle Scholar
  700. Spitzer, L., Physical Processes in the Interstellar Medium, Wiley-Interscience, New York (1978)Google Scholar
  701. Springel, V., Smoothed particle hydrodynamics in astrophysics, ARA&A, 48, 391 (2010)ADSCrossRefGoogle Scholar
  702. Stacy A., Bromm V., Constraining the statistics of Population III binaries, MNRAS, 433, 1094 (2013)ADSCrossRefGoogle Scholar
  703. Stamatellos, D., Whitworth, A. P., Ward-Thompson, D., The dust temperatures of the pre-stellar cores in the \(\rho \) Oph main cloud and in other star-forming regions: consequences for the core mass function, MNRAS, 379, 1390 (2007)ADSCrossRefGoogle Scholar
  704. Stanke, T., McCaughrean, M. J., Zinnecker, H., An unbiased H\(_{2}\) survey for protostellar jets in Orion A. II. The infrared survey data, A&A, 392, 239 (2002)Google Scholar
  705. Stecher, T. P., Williams, D. A., Photodestruction of Hydrogen Molecules in H\(_{{\rm I}}\) Regions, ApJ, 149, L29 (1967)Google Scholar
  706. Stephens, T. L., Dalgarno, A., Kinetic Energy in the Spontaneous Radiative Dissociation of Molecular Hydrogen, ApJ, 186, 165 (1973)ADSCrossRefGoogle Scholar
  707. Sternberg, A., Dalgarno, A., Chemistry in Dense Photon-dominated Regions, ApJS, 99, 565 (1995)ADSCrossRefGoogle Scholar
  708. Stone, J. M., Norman, M. L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests, ApJS, 80, 753 (1992a)Google Scholar
  709. Stone, J. M., Norman, M. L., ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Algorithms and Tests, ApJS, 80, 791 (1992b)Google Scholar
  710. Stone, J. M., Ostriker, E. C., Gammie, C. F., Dissipation in Compressible Magnetohydrodynamic Turbulence, ApJ, 508, L99 (1998)ADSCrossRefGoogle Scholar
  711. Stutzki, J., Stacey, G. J., Genzel, R., Harris, A. I., Jaffe, D. T., Lugten, J. B., Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation, ApJ, 332, 379 (1988)ADSCrossRefGoogle Scholar
  712. Sugitani, K., Nakamura, F., Tamura, M., Watanabe, M., Kandori, R., Nishiyama, S., Kusakabe, N., Hashimoto, J., Nagata, T., Sato, S., Near-infrared Imaging Polarimetry of the Serpens Cloud Core: Magnetic Field Structure, Outflows, and Inflows in a Cluster Forming Clump, ApJ, 716, 299 (2010)Google Scholar
  713. Sutherland, R. S., Dopita, M. A., Cooling functions for low-density astrophysical plasmas, ApJS, 88, 253 (1993)ADSCrossRefGoogle Scholar
  714. Szűcs L., Glover S. C. O., Klessen R. S., The \(^{12}\)CO ratio in turbulent molecular clouds, MNRAS, 445, 4055 (2014)Google Scholar
  715. Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., Comito, C., Systematic Molecular Differentiation in Starless Cores, ApJ, 569, 815 (2002)ADSCrossRefGoogle Scholar
  716. Tafalla, M., Santiago-García, J., Myers, P. C., Caselli, P., Walmsley, C. M., Crapsi, A., On the internal structure of starless cores. II. A molecular survey of L1498 and L1517B, A&A, 455, 577 (2006)Google Scholar
  717. Tamburro, D., Rix, H.-W., Leroy, A. K., Low, M.-M. M., Walter, F., Kennicutt, R. C., Brinks, E., de Blok, W. J. G., What is driving the H\(_{{\rm I}}\) velocity dispersion? AJ, 137, 4424 (2009)Google Scholar
  718. Tasker, E. J., Tan, J. C., Star Formation in Disk Galaxies. I. Formation and Evolution of Giant Molecular Clouds via Gravitational Instability and Cloud Collisions, ApJ, 700, 358 (2009)Google Scholar
  719. Testi, L., Palla, F., Prusti, T., Natta, A., Maltagliati, S., A search for clustering around Herbig Ae/Be stars, A&A, 320, 159 (1997)ADSGoogle Scholar
  720. Testi, L., Sargent, A. I., Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core, ApJ, 508, L91 (1998)ADSCrossRefGoogle Scholar
  721. Tegmark, M., Silk, J., Rees, M. J., Blanchard, A., Abel, T., Palla, F., How Small Were the First Cosmological Objects? ApJ, 474, 1 (1997)ADSCrossRefGoogle Scholar
  722. Thompson, R., Nagamine, K., Jaacks, J., Choi, J.-H., Molecular Hydrogen Regulated Star Formation in Cosmological Smoothed Particle Hydrodynamics Simulations, ApJ, 780, 145 (2014)ADSCrossRefGoogle Scholar
  723. Thornton, K., Gaudlitz, M., Janka, H.-T., Steinmetz, M., Energy input and mass redistribution by supernovae in the interstellar medium, ApJ, 500, 95 (1998)ADSCrossRefGoogle Scholar
  724. Tielens, A. G. G. M., The Physics and Chemistry of the Interstellar Medium, Cambridge University Press (2010)Google Scholar
  725. Tielens, A. G. G. M., Hollenbach, D., Photodissociation regions. I. Basic model, ApJ, 291, 722 (1985)Google Scholar
  726. Tomisaka, K., Coagulation of interstellar clouds in spiral gravitational potential and formation of giant molecular clouds, PASJ, 36, 457 (1984)ADSGoogle Scholar
  727. Toomre, A., On the gravitational stability of a disk of stars, ApJ, 139, 1217 (1964)ADSCrossRefGoogle Scholar
  728. Tóth, L. V., Haas, M., Lemke, D., Mattila, K., Onishi, T., Very cold cores in the Taurus Molecular Ring as seen by ISO, A&A, 420, 533 (2004)ADSCrossRefGoogle Scholar
  729. Townsley, L. K., Broos, P. S., Feigelson, E. D., Garmire, G. P., Getman, K. V., A Chandra ACIS Study of 30 Doradus. II. X-Ray Point Sources in the Massive Star Cluster R136 and Beyond, AJ, 131, 2164 (2006)Google Scholar
  730. Troland, T. H., Crutcher, R. M., Goodman, A. A., Heiles, C., Kazes, I., Myers, P. C., The Magnetic Fields in the Ophiuchus and Taurus Molecular Clouds, ApJ, 471, 302 (1996)ADSCrossRefGoogle Scholar
  731. van der Tak, F. F. S., van Dishoeck, E. F., Limits on the cosmic-ray ionization rate toward massive young stars, A&A, 358, L79 (2000)ADSGoogle Scholar
  732. van der Werf, P., H\(_{2}\) Emission as a Diagnostic of Physical Processes in Starforming Galaxies, in: Molecular Hydrogen in Space, edited by F. Combes, G. Pineau Des Forets, p. 307 (2000)Google Scholar
  733. van Dishoeck, E. F., Photodissociation processes of astrophysical molecules, in Astrochemistry, IAU Symposium, vol. 120 (D. Reidel, Dordrecht), p. 51 (1987)Google Scholar
  734. van Dishoeck, E. F., Black, J. H., The photodissociation and chemistry of interstellar CO, ApJ, 334, 771 (1988)ADSCrossRefGoogle Scholar
  735. van Weeren, R. J., Brinch, C., Hogerheijde, M. R., Modeling the chemical evolution of a collapsing prestellar core in two spatial dimensions, A&A, 497, 773 (2009)ADSCrossRefGoogle Scholar
  736. van Zadelhoff, G. J., Dullemond, C. P., van der Tak, F. F. S., Yates, J. A., Doty, S. D., Ossenkopf, V., et al., Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics, A&A, 395, 373 (2002)ADSCrossRefGoogle Scholar
  737. van Zee, L., Bryant, J., Neutral gas distribution and kinematics of the nearly face-on spiral galaxy NGC 1232, AJ, 118, 2172 (1999)ADSCrossRefGoogle Scholar
  738. Vázquez-Semadeni, E., Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics, ApJ, 423, 681 (1994)ADSCrossRefGoogle Scholar
  739. Vázquez-Semadeni, E., Ballesteros-Paredes, J., Klessen, R. S., A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency: First Tests, ApJ, 585, L131 (2003)ADSCrossRefGoogle Scholar
  740. Vázquez-Semadeni, E., Gazol, A., Scalo, J., Is thermal instability significant in turbulent galactic gas? ApJ, 540, 271 (2000)ADSCrossRefzbMATHGoogle Scholar
  741. Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A.-K., Ballesteros-Paredes, J., Klessen, R. S., High- and Low-Mass Star-Forming Regions from Hierarchical Gravitational Fragmentation. High Local Star Formation Rates with Low Global Efficiencies, ApJ, 707, 1023 (2009)Google Scholar
  742. Vázquez-Semadeni, E., Ryu, D., Passot, T., González, R. F., Gazol, A., Molecular Cloud Evolution. I. Molecular Cloud and Thin Cold Neutral Medium Sheet Formation, ApJ, 643, 245 (2006)Google Scholar
  743. Veltchev, T. V., Klessen, R. S., Clark, P. C., Stellar and substellar initial mass function: a model that implements gravoturbulent fragmentation and accretion, MNRAS, 411, 301 (2011)ADSCrossRefGoogle Scholar
  744. Verma, M. K., Intermittency exponents and energy spectrum of the burgers and kpz equations with correlated noise, Physica A, 277, 359 (2000)ADSCrossRefGoogle Scholar
  745. Verschuur, G. L., Zeeman Effect Observations of H\(_{{\rm I}}\) Emission Profiles. I. Magnetic Field Limits for Three Regions Based on Observations Corrected for Polarized Beam Structure, ApJ, 451, 624 (1995a)Google Scholar
  746. Verschuur, G. L., Zeeman Effect Observations of H\(_{{\rm I}}\) Emission Profiles. II. Results of an Attempt to Confirm Previous Claims of Field Detections, ApJ, 451, 645 (1995b)Google Scholar
  747. Vink, J. S., de Koter, A., Lamers, H. J. G. L. M., New theoretical mass-loss rates of O and B stars, A&A, 362, 295 (2000)ADSGoogle Scholar
  748. Vink, J. S., de Koter, A., Lamers, H. J. G. L. M., Mass-loss predictions for O and B stars as a function of metallicity, A&A, 369, 574 (2001)ADSCrossRefGoogle Scholar
  749. Vink J. S., Heger A., Krumholz M. R., et al., Very Massive Stars in the Local Universe, Hightlights of Astronomy, 16, 51 (2015)Google Scholar
  750. Visser, R., van Dishoeck, E. F., Black, J. H., The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks, A&A, 503, 323 (2009)ADSCrossRefGoogle Scholar
  751. von Weizsäcker C. F., The Evolution of Galaxies and Stars, ApJ, 114, 165 (1951)CrossRefMathSciNetGoogle Scholar
  752. Wada, K., Instabilities of spiral shocks. II. A quasi-steady state in the multiphase inhomogeneous ISM, ApJ, 675, 188 (2008)Google Scholar
  753. Wada, K., Meurer, G., Norman, C. A., Gravity-driven turbulence in galactic disks, ApJ, 577, 197 (2002)ADSCrossRefGoogle Scholar
  754. Wakker, B. P., Howk, J. C., Savage, B. D., van Woerden, H., Tufte, S. L., Schwarz, U. J., Benjamin, R., Reynolds, R. J., Peletier, R. F., Kalberla, P. M. W., Accretion of low-metallicity gas by the milky way, Nature, 402, 388 (1999)ADSCrossRefGoogle Scholar
  755. Walborn, N. R., Blades, J. C., Spectral Classification of the 30 Doradus Stellar Populations, ApJS, 112, 457 (1997)ADSCrossRefGoogle Scholar
  756. Walch, S., Whitworth, A. P., Bisbas, T. G., Wünsch, R., Hubber, D. A., Clumps and triggered star formation in ionized molecular clouds, MNRAS, 435, 917 (2013)ADSCrossRefGoogle Scholar
  757. Walch, S. K., Whitworth, A. P., Bisbas, T., Wünsch, R., Hubber, D., Dispersal of molecular clouds by ionizing radiation, MNRAS, 427, 625 (2012)ADSCrossRefGoogle Scholar
  758. Walmsley, C. M., Ungerechts, H., Ammonia as a molecular cloud thermometer, A&A, 122, 164 (1983)ADSGoogle Scholar
  759. Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C., Jr., Thornley, M. D., Leroy, A. K., THINGS: The H\(_{{\rm I}}\) Nearby Galaxy Survey, AJ, 136, 2563 (2008)Google Scholar
  760. Wang, P., Li, Z.-Y., Abel, T., Nakamura, F., Outflow feedback regulated massive star formation in parsec-scale cluster-forming clumps, ApJ, 709, 27 (2010)ADSCrossRefGoogle Scholar
  761. Wannier, P. G., Lichten, S. M., Morris, M., Warm H\(_{{\rm I}}\) halos around molecular clouds, ApJ, 268, 727 (1983)Google Scholar
  762. Ward-Thompson, D., André, P., Crutcher, R., Johnstone, D., Onishi, T., Wilson, C., An Observational Perspective of Low-Mass Dense Cores II: Evolution Toward the Initial Mass Function, in: Protostars and Planets V, edited by B. Reipurth, D. Jewitt, K. Keil, p. 33 (2007)Google Scholar
  763. Ward-Thompson, D., André, P., Kirk, J. M., The initial conditions of isolated star formation - V. ISOPHOT imaging and the temperature and energy balance of pre-stellar cores, MNRAS, 329, 257 (2002)Google Scholar
  764. Ward-Thompson, D., Motte, F., Andre, P., The initial conditions of isolated star formation - III. Millimetre continuum mapping of pre-stellar cores, MNRAS, 305, 143 (1999)Google Scholar
  765. Warin, S., Benayoun, J. J., Viala, Y. P., Photodissociation and rotational excitation of interstellar CO, A&A, 308, 535 (1996)ADSGoogle Scholar
  766. Weidner, C., Kroupa, P., Evidence for a fundamental stellar upper mass limit from clustered star formation, MNRAS, 348, 187 (2004)ADSCrossRefGoogle Scholar
  767. Weidner, C., Kroupa, P., The maximum stellar mass, star-cluster formation and composite stellar populations, MNRAS, 365, 1333 (2006)ADSCrossRefGoogle Scholar
  768. Weidner, C., Kroupa, P., Bonnell, I. A. D., The relation between the most-massive star and its parental star cluster mass, MNRAS, 401, 275 (2010)ADSCrossRefGoogle Scholar
  769. Weingartner, J. C., Draine, B. T., Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud ApJ, 548, 296 (2001a)Google Scholar
  770. Weingartner, J. C., Draine, B. T., Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating, ApJS, 134, 263 (2001b)ADSCrossRefGoogle Scholar
  771. Welty, D. E., Hobbs, L. M., Lauroesch, J. T., Morton, D. C., Spitzer, L., York, D. G., The Diffuse Interstellar Clouds toward 23 Orionis, ApJS, 124, 465 (1999)ADSCrossRefGoogle Scholar
  772. Wernli, M., Valiron, P., Faure, A., Wiesenfeld, L., Jankowski, P., Szalewicz, K., Improved low-temperature rate constants for rotational excitation of CO by H\(_2\), A&A, 446, 367 (2006)ADSCrossRefGoogle Scholar
  773. Wiersma, R. P. C., Schaye, J., Smith, B. D., The effect of photoionization on the cooling rates of enriched, astrophysical plasmas, MNRAS, 393, 99 (2009)ADSCrossRefGoogle Scholar
  774. Wiesenfeld, L., Goldsmith, P. F., C\(^{+}\) in the interstellar medium: collisional excitation by H\(_{2}\) revisited, ApJ, 780, 183 (2014)ADSCrossRefGoogle Scholar
  775. Wilden, B. S., Jones, B. F., Lin, D. N. C., Soderblom, D. R., Evolution of the Lithium Abundance of Solar-Type Stars. X. Does Accretion Affect the Lithium Dispersion in the Pleiades? AJ, 124, 2799 (2002)Google Scholar
  776. Williams, J. P., Bergin, E. A., Caselli, P., Myers, P. C., Plume, R., The Ionization Fraction in Dense Molecular Gas. I. Low-Mass Cores, ApJ, 503, 689 (1998)Google Scholar
  777. Williams, J. P., Blitz, L., McKee, C. F., The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF, in Protostars and Planets IV, edited by V. Mannings, A. P. Boss, S. S. Russell, p. 97 (2000)Google Scholar
  778. Wilson, B. A., Dame, T. M., Masheder, M. R. W., Thaddeus, P., A uniform co survey of the molecular clouds in orion and monoceros, A&A, 430, 523 (2005)ADSCrossRefGoogle Scholar
  779. Wolfire, M. G., Hollenbach, D., McKee, C. F., The Dark Molecular Gas, ApJ, 716, 1191 (2010)ADSCrossRefGoogle Scholar
  780. Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., Bakes, E. L. O., The neutral atomic phases of the interstellar medium, ApJ, 443, 152 (1995)ADSCrossRefGoogle Scholar
  781. Wolfire, M. G., McKee, C. F., Hollenbach, D., Tielens, A. G. G. M., Neutral Atomic Phases of the Interstellar Medium in the Galaxy, ApJ, 587, 278 (2003)ADSCrossRefGoogle Scholar
  782. Wong, T., Blitz, L., The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies, ApJ, 569, 157 (2002)ADSCrossRefGoogle Scholar
  783. Wood, D. O. S., Churchwell, E., The morphologies and physical properties of ultracompact H\(_{{\rm II}}\) regions, ApJS, 69, 831 (1989)Google Scholar
  784. Xue, X. X., Rix, H. W., Zhao, G., Fiorentin, P. R., Naab, T., Steinmetz, M., van den Bosch, F. C., Beers, T. C., Lee, Y. S., Bell, E. F., Rockosi, C., Yanny, B., Newberg, H., Wilhelm, R., Kang, X., Smith, M. C., Schneider, D. P., The Milky Way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of 2400 SDSS blue horizontal-branch stars, ApJ, 684, 1143 (2008)ADSCrossRefGoogle Scholar
  785. Yeh, S. C. C., Matzner, C. D., Ionization parameter as a diagnostic of radiation and wind pressures in H\(_{{\rm II}}\) regions and starburst galaxies, ApJ, 757, 108 (2012)Google Scholar
  786. Yorke, H. W., Sonnhalter, C., On the Formation of Massive Stars, ApJ, 569, 846 (2002)ADSCrossRefGoogle Scholar
  787. Zhukovska, S., Gail, H.-P., Trieloff, M., Evolution of interstellar dust and stardust in the solar neighbourhood, A&A, 479, 453 (2008)ADSCrossRefGoogle Scholar
  788. Zinnecker, H., Star Formation from Hierarchical Cloud Fragmentation - A Statistical Theory of the Log-Normal Initial Mass Function, MNRAS, 210, 43 (1984)ADSCrossRefGoogle Scholar
  789. Zinnecker, H., Yorke, H. W., Toward Understanding Massive Star Formation, ARA&A, 45, 481 (2007)ADSCrossRefGoogle Scholar
  790. Zuckerman, B., Evans, N. J., Models of massive molecular clouds, ApJ, 192, L149 (1974)ADSCrossRefGoogle Scholar
  791. Zweibel, E. G., Ambipolar drift in a turbulent medium, ApJ, 567, 962 (2002)ADSCrossRefGoogle Scholar
  792. Zweibel, E. G., Josafatsson, K., Hydromagnetic wave dissipation in molecular clouds, ApJ, 270, 511 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Zentrum Für Astronomie der Universität HeidelbergHeidelbergGermany

Personalised recommendations