A Short Paper on the Incentives to Share Private Information for Population Estimates

  • Michela ChessaEmail author
  • Jens Grossklags
  • Patrick Loiseau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8975)


Consumers are often willing to contribute their personal data for analytics projects that may create new insights into societal problems. However, consumers also have justified privacy concerns about the release of their data.

We study the trade-off between privacy concerns related to data release and the incentives to contribute to the estimation of a population average of a private attribute. Consumers may decide whether to participate in the analytics project, and what level of data precision they are willing to provide. We show that setting a minimum precision level for participating users leads to a strict improvement of the estimation.


Non-cooperative game theory Privacy Estimation cost Data analytics Incentives for participation 



This work was funded by the French Government (National Research Agency, ANR) through the “Investments for the Future” Program reference # ANR-11-LABX-0031-01. We would like to thank the anonymous reviewers and Alvaro Cardenas for their helpful comments.


  1. 1.
    World Economic Forum: Personal Data: The Emergence of a New Asset Class (2011)Google Scholar
  2. 2.
    Varian, H.: Beyond big data. Business Econ. 49(1), 27–31 (2014)CrossRefGoogle Scholar
  3. 3.
    Acquisti, A., Fong, C.: An experiment in hiring discrimination via online social networks. Technical report SSRN: (2013)
  4. 4.
    Mikians, J., Gyarmati, L., Erramilli, V., Laoutaris, N.: Crowd-assisted search for price discrimination in e-commerce: first results. In: Proceedings of the Conference on Emerging Networking Experiments and Technologies (CoNEXT), pp. 1–6 (2013)Google Scholar
  5. 5.
    Spiekermann, S., Grossklags, J., Berendt, B.: E-privacy in 2nd generation e-commerce: privacy preferences versus actual behavior. In: Proceedings of the 3rd ACM Conference on Electronic Commerce, pp. 38–47 (2001)Google Scholar
  6. 6.
    Altman, I.: The Environment and Social Behavior. Belmont. Plenum Press, New York (1975)Google Scholar
  7. 7.
    Warren, S., Brandeis, L.: The right to privacy. Harvard Law Rev. 4, 193–220 (1890)CrossRefGoogle Scholar
  8. 8.
    Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making. IEEE Secur. Priv. 3(1), 26–33 (2005)CrossRefGoogle Scholar
  9. 9.
    Westin, A.: Privacy and freedom. Atheneum, New York (1970)Google Scholar
  10. 10.
    Lane, J., Stodden, V., Bender, S., Nissenbaum, H.: Privacy, Big Data, and the Public Good: Frameworks for Engagement. Cambridge University Press, New York (2014)Google Scholar
  11. 11.
    Pukelsheim, F.: Optimal Design of Experiments, vol. 50. Society for Industrial Mathematics, Philadelphia (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Atkinson, A., Donev, A., Tobias, R.: Optimum Experimental Designs, with SAS. Oxford University Press, New York (2007)zbMATHGoogle Scholar
  13. 13.
    Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for experimental design. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 719–730. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Roth, A., Schoenebeck, G.: Conducting truthful surveys, cheaply. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 826–843 (2012)Google Scholar
  15. 15.
    Riederer, C., Erramilli, V., Chaintreau, A., Krishnamurthy, B., Rodriguez, P.: For sale : your data: by : you. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks, pp. 13:1–13:6 (2011)Google Scholar
  16. 16.
    Bilogrevic, I., Freudiger, J., De Cristofaro, E., Uzun, E.: What’s the gist? privacy-preserving aggregation of user profiles. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 128–145. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. JMLR W&CP (Proceedings of COLT 2012) 23:25.1-25.40 (2012)Google Scholar
  19. 19.
    Ghosh, A., Roth, A.: Selling privacy at auction. In: Proceedings of the 12th ACM Conference on Electronic Commerce, pp. 199–208 (2011)Google Scholar
  20. 20.
    Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism design via differential privacy. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 203–213 (2012)Google Scholar
  21. 21.
    Ligett, K., Roth, A.: Take it or leave it: running a survey when privacy comes at a cost. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 378–391. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Ghosh, A., Ligett, K.: Privacy and coordination: computing on databases with endogenous participation. In: Proceedings of the 14th ACM Conference on Electronic Commerce, pp. 543–560 (2013)Google Scholar
  23. 23.
    Vaidya, J., Clifton, C., Zhu, Y.: Privacy Preserving Data Mining. Springer, New York (2006) zbMATHGoogle Scholar
  24. 24.
    Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C., Yu, P. (eds.) Privacy-Preserving Data Mining. Advances in Database Systems, pp. 53–80. Springer, US (2008) CrossRefGoogle Scholar
  25. 25.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 439–450 (2000)Google Scholar
  26. 26.
    Oliveira, S., Zaiane, O.: Privacy preserving clustering by data transformation. In: Proceedings of the XVIII Simposio Brasileiro de Bancos de Dados, pp. 304–318 (2003)Google Scholar
  27. 27.
    Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure limitation of sensitive rules. In: Proceedings of the Workshop on Knowledge and Data Engineering Exchange (KDEX 1999), pp. 45–52 (1999)Google Scholar
  28. 28.
    Dekel, O., Fischer, F., Procaccia, A.D.: Incentive compatible regression learning. J. Comput. Syst. Sci. 76(8), 759–777 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Perote, J., Perote-Pena, J.: Strategy-proof estimators for simple regression. Math. Soc. Sci. 47(2), 153–176 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Aperjis, C., Gkatzelis, V., Huberman, B.: Pricing private data. Electronic Markets (forthcoming)Google Scholar
  31. 31.
    Ioannidis, S., Loiseau, P.: Linear regression as a non-cooperative game. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 277–290. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  32. 32.
    Morgan, J.: Financing public goods by means of lotteries. Rev. Econ. Stud. 67(4), 761–784 (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Acquisti, A., Grossklags, J.: An online survey experiment on ambiguity and privacy. Commun. Strat. 49(4), 19–39 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michela Chessa
    • 1
    Email author
  • Jens Grossklags
    • 2
  • Patrick Loiseau
    • 1
  1. 1.EURECOMBiotFrance
  2. 2.The Pennsylvania State UniversityState CollegeUSA

Personalised recommendations