Advertisement

Binary Pattern Tile Set Synthesis Is NP-hard

  • Lila Kari
  • Steffen Kopecki
  • Pierre-Étienne Meunier
  • Matthew J. Patitz
  • Shinnosuke Seki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)

Abstract

We solve an open problem, stated in 2008, about the feasibility of designing efficient algorithmic self-assembling systems which produce 2-dimensional colored patterns. More precisely, we show that the problem of finding the smallest tile assembly system which will self-assemble an input pattern with 2 colors (i.e., \(2\)-Pats) is NP-hard. One crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof for the four color theorem and the recent important advance on the Erdős discrepancy problem using computer programs. In this paper, these techniques will be brought to a new order of magnitude, computational tasks corresponding to one CPU-year. We massively parallelize our program, and provide a full proof of its correctness. Its source code is freely available online.

Keywords

Input Pattern Conjunctive Normal Form Tile Type Rectangular Pattern Discrepancy Conjecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E., Koucký, M.: Amplifying lower bounds by means of self-reducibility. J. ACM 57(3), 14:1–14:36 (2010)CrossRefGoogle Scholar
  2. 2.
    Appel, K., Haken, W.: Every planar map is four colorable. Part I. discharging. Illinois J. Math. 21, 429–490 (1977)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Appel, K., Haken, W.: Every planar map is four colorable. Part II. reducibility. Illinois J. Math. 21, 491–567 (1977)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano. Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  5. 5.
    Chow, T.Y.: Almost-natural proofs. J. Comput. Syst. Sci. 77(4), 728–737 (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gonthier, G.: Formal proof - the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets in patterned DNA self-assembly. J. Comput. Syst. Sci. 80, 297–319 (2014)zbMATHCrossRefGoogle Scholar
  10. 10.
    Helfgott, H.A.: The ternary Goldbach conjecture is true arXiv:1312.7748 (2013)
  11. 11.
    Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness of 11-colored patterned self-assembly of tile set synthesis. arXiv:1409.1619 (2014)
  13. 13.
    Kari, L., Kopecki, S., Meunier, P.E., Patitz, M.J., Seki, S.: Binary pattern tile set synthesis is NP-hard. arXiv:1404.0967 (2014)
  14. 14.
    Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comp. (2014) (in Press)Google Scholar
  15. 15.
    Konev, B., Lisitsa, A.: A SAT attack on the Erdös discrepancy conjecture. arXiv: 1402.2184 (2014)
  16. 16.
    Lund, K., Manzo, A.T., Dabby, N., Micholotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)CrossRefGoogle Scholar
  17. 17.
    Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE T. Comput. Aid. D. 27(5), 963–967 (2008)CrossRefGoogle Scholar
  18. 18.
    Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), Article No. 11 (2008)Google Scholar
  19. 19.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196 (2011)CrossRefGoogle Scholar
  20. 20.
    Razborov, A.A., Rudich, S.: Natural proofs. In: Proc. STOC 1994, pp. 204–213. ACM, New York (1994)Google Scholar
  21. 21.
    Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: A new proof of the four-colour theorem. Electron. Res. Announc. AMS. 2(1), 17–25 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)CrossRefGoogle Scholar
  23. 23.
    Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. J. Comput. Syst. Sci. 55, 204–213 (1997)MathSciNetGoogle Scholar
  24. 24.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  25. 25.
    Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  26. 26.
    Seki, S.: Combinatorial optimization in pattern assembly. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 220–231. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Tuckerman, B.: The 24th Mersenne prime. Proc. Nat. Acad. Sci. USA 68, 2319–2320 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, H.: Proving theorems by pattern recognition - II. AT&T Tech. J. XL(1), 1–41 (1961)Google Scholar
  30. 30.
    Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology, June 1998Google Scholar
  31. 31.
    Yan, H., Park, S.H., Finkelson, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)CrossRefGoogle Scholar
  32. 32.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar
  33. 33.
    Zhang, J., Liu, Y., Ke, Y., Yan, H.: Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Letters 6(2), 248–251 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lila Kari
    • 1
  • Steffen Kopecki
    • 1
  • Pierre-Étienne Meunier
    • 2
  • Matthew J. Patitz
    • 3
  • Shinnosuke Seki
    • 2
    • 4
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada
  2. 2.Department of Computer ScienceAalto UniversityAaltoFinland
  3. 3.Department of Computer Science and Computer EngineeringUniversity of ArkansasFayettevilleUSA
  4. 4.Helsinki Institute for Information Technology (HIIT)EspooFinland

Personalised recommendations