ICALP 2015: Automata, Languages, and Programming pp 935-946

# Linear Time Parameterized Algorithms for Subset Feedback Vertex Set

• Daniel Lokshtanov
• M. S. Ramanujan
• Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)

## Abstract

In the Subset Feedback Vertex Set (Subset FVS) problem, the input is a graph $$G$$ on $$n$$ vertices and $$m$$ edges, a subset of vertices $$T$$, referred to as terminals, and an integer $$k$$. The objective is to determine whether there exists a set of at most $$k$$ vertices intersecting every cycle that contains a terminal. The study of parameterized algorithms for this generalization of the Feedback Vertex Set problem has received significant attention over the last few years. In fact the parameterized complexity of this problem was open until 2011, when two groups independently showed that the problem is fixed parameter tractable (FPT). Using tools from graph minors Kawarabayashi and Kobayashi obtained an algorithm for Subset FVS running in time $${\mathcal {O}}(f(k)\cdot n^2 m)$$ [SODA 2012, JCTB 2012]. Independently, Cygan et al. [ICALP 2011, SIDMA 2013] designed an algorithm for Subset FVS running in time $$2^{{\mathcal {O}}(k \log k)}\cdot n^{{\mathcal {O}}(1)}$$. More recently, Wahlström obtained the first single exponential time algorithm for Subset FVS, running in time $$4^{k}\cdot n^{{\mathcal {O}}(1)}$$ [SODA 2014]. While the $$2^{{\mathcal {O}}(k)}$$ dependence on the parameter $$k$$ is optimal under the Exponential Time Hypothesis (ETH), the dependence of this algorithm as well as those preceding it, on the input size is far from linear.

In this paper we design the first linear time parameterized algorithms for Subset FVS. More precisely, we obtain two new algorithms for Subset FVS.

• A randomized algorithm for Subset FVS running in time $${\mathcal {O}}(25.6^k k^{{\mathcal {O}}(1)} (n + m))$$.

• A deterministic algorithm for Subset FVS running in time $$2^{{\mathcal {O}}(k \log k)} (n + m)$$.

In particular, the first algorithm obtains the best possible dependence on both the parameter as well as the input size, up to the constant in the exponent. Both of our algorithms are based on “cut centrality”, in the sense that solution vertices are likely to show up in minimum size cuts between vertices sampled from carefully chosen distributions.

## Preview

### References

1. 1.
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
2. 2.
Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An $$O(c^k n)$$ $$5$$-approximation algorithm for treewidth. In: FOCS, pp. 499–508 (2013)Google Scholar
3. 3.
Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)
4. 4.
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)
5. 5.
Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55(1), 1–13 (2009)
6. 6.
Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)Google Scholar
7. 7.
Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed subset feedback vertex set is fixed-parameter tractable. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 230–241. Springer, Heidelberg (2012)
8. 8.
Cygan, M., Nederlof, J., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: FOCS, pp. 150–159 (2011)Google Scholar
9. 9.
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)
10. 10.
Cygan, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)
11. 11.
Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
12. 12.
Dorn, F.: Planar subgraph isomorphism revisited. In: STACS, pp. 263–274 (2010)Google Scholar
13. 13.
Grohe, M., Kawarabayashi, K.-I., Reed, B.A.: A simple algorithm for the graph minor decomposition - logic meets structural graph theory. In: SODA, pp. 414–431 (2013)Google Scholar
14. 14.
Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)
15. 15.
Kawarabayashi, K.-I.: Planarity allowing few error vertices in linear time. In: FOCS, pp. 639–648 (2009)Google Scholar
16. 16.
Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B 102(4), 1020–1034 (2012)
17. 17.
Kawarabayashi, K.-I., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in quadratic time. J. Comb. Theory, Ser. B 102(2), 424–435 (2012)
18. 18.
Kawarabayashi, K.-I., Mohar, B.: Graph and map isomorphism and all polyhedral embeddings in linear time. In: STOC, pp. 471–480 (2008)Google Scholar
19. 19.
Kawarabayashi, K.-I., Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: FOCS, pp. 771–780 (2008)Google Scholar
20. 20.
Kawarabayashi, K.-I., Reed, B.A.: A nearly linear time algorithm for the half integral parity disjoint paths packing problem. In: SODA, pp. 1183–1192 (2009)Google Scholar
21. 21.
Kawarabayashi, K.-I., Reed, B.A.: An (almost) linear time algorithm for odd cycles transversal. In: SODA, pp. 365–378 (2010)Google Scholar
22. 22.
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
23. 23.
Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In: SODA, pp. 1749–1761 (2014)Google Scholar
24. 24.
Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching and FPT algorithms (2013). CoRR, abs/1310.2841Google Scholar
25. 25.
Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algorithm. In: SODA, pp. 1802–1811 (2014)Google Scholar
26. 26.
Kakimura, N., Kawarabayashi, K.-I., Kobayashi, Y.: Erdös-Pósa property and its algorithmic applications: parity constraints, subset feedback set, and subset packing. In: SODA, pp. 1726–1736 (2012)Google Scholar
27. 27.
Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)
28. 28.
Lokshtanov, D., Ramanujan, M.S.: Parameterized tractability of multiway cut with parity constraints. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 750–761. Springer, Heidelberg (2012)
29. 29.
Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)
30. 30.
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)
31. 31.
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)
32. 32.
Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3), 403–415 (2006)
33. 33.
Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-symmetric multicuts. In: SODA pp. 1739–1748 (2014)Google Scholar
34. 34.
Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)
35. 35.
Robertson, N., Seymour, P.D.: Graph minors. xiii. the disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)
36. 36.
Wahlström, M.: Half-integrality, LP-branching and FPT algorithms. In: SODA, pp. 1762–1781 (2014)Google Scholar

## Authors and Affiliations

• Daniel Lokshtanov
• 1
• M. S. Ramanujan
• 1
• Saket Saurabh
• 1
• 2
1. 1.University of BergenBergenNorway
2. 2.The Institute of Mathematical SciencesChennaiIndia