Skip to main content

Deterministic Truncation of Linear Matroids

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

Let \(M=(E,\mathcal{I})\) be a matroid. A \(k\) -truncation of \(M\) is a matroid \(M'=(E,\mathcal{I}')\) such that for any \(A\subseteq E\), \(A\in \mathcal{I}'\) if and only if \(|A|\le k\) and \(A\in \mathcal {I}\). Given a linear representation of \(M\) we consider the problem of finding a linear representation of the \(k\)-truncation of this matroid. This problem can be expressed as the following problem on matrices. Let \(M\) be a \(n\times m\) matrix over a field \(\mathbb {F}\). A rank \(k\) -truncation of the matrix \(M\) is a \(k\times m\) matrix \(M_k\) (over \({\mathbb F}\) or a related field) such that for every subset \(I\subseteq \{1,\ldots ,m\}\) of size at most \(k\), the set of columns corresponding to \(I\) in \(M\) has rank \(|I|\) if and only if the corresponding set of columns in \(M_k\) has rank \(|I|\). A common way to compute a rank \(k\)-truncation of a \(n \times m\) matrix is to multiply the matrix with a random \(k\times n\) matrix (with the entries from a field of an exponential size), yielding a simple randomized algorithm. So a natural question is whether it possible to obtain a rank \(k\)-truncation of a matrix, deterministically. In this paper we settle this question for matrices over any field in which the field operations can be done efficiently. This includes any finite field and the field of rationals (\(\mathbb Q\)).

Our algorithms are based on the properties of the classical Wronskian determinant, and the folded Wronskian determinant, which was recently introduced by Guruswami and Kopparty [ FOCS, 2013 ], and was implicitly present in the work of Forbes and Shpilka [ STOC, 2012 ]. These were used in the context of subspace designs, and reducing randomness for polynomial identity testing and other related problems. Our main conceptual contribution in this paper is to show that the Wronskian determinant can also be used to obtain a representation of the truncation of a linear matroid in deterministic polynomial time. Finally, we use our results to derandomize several parameterized algorithms, including an algorithm for computing \(\ell \) -Matroid Parity, to which several problems like \(\ell \) -Matroid Intersection can be reduced.

D. Lokshtanov is supported by the “BeHard” grant under the recruitment programme of the of Bergen Research Foundation. F. Panolan is supported by the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 267959. S. Saurabh is supported by “PARAPPROX" ERC starting grant no. 306992.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar 16, 447–452 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bostan, A., Dumas, P.: Wronskians and linear independence. The American Mathematical Monthly 117(8), 722–727 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003). http://dx.doi.org/10.1002/rsa.10073

    Article  MATH  MathSciNet  Google Scholar 

  5. Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multiplicities, with applications to kakeya sets and mergers. In: FOCS, pp. 181–190. IEEE (2009)

    Google Scholar 

  6. Fomin, F.V., Golovach, P.A.: Long circuits and large euler subgraphs. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 493–504. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Fomin, F.V., Golovach, P.A.: Parameterized complexity of connected even/odd subgraph problems. J. Comput. Syst. Sci. 80(1), 157–179 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014)

    Google Scholar 

  9. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms (2013). CoRR abs/1304.4626

    Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA, pp. 142–151 (2014)

    Google Scholar 

  11. Forbes, M.A., Saptharishi, R., Shpilka, A.: Hitting sets for multilinear read-once algebraic branching programs, in any order. In: Shmoys, D.B. (ed.) STOC, pp. 867–875. ACM (2014)

    Google Scholar 

  12. Forbes, M.A., Shpilka, A.: On identity testing of tensors, low-rank recovery and compressed sensing. In: STOC, pp. 163–172. ACM (2012)

    Google Scholar 

  13. Frankl, P.: An extremal problem for two families of sets. European J. Combin. 3(2), 125–127 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gabizon, A.: Deterministic Extraction from Weak Random Sources. Monographs in Theoretical Computer Science. An EATCS Series. Springer (2011)

    Google Scholar 

  15. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields. Combinatorica 28(4), 415–440 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Nabeshima, K., Nagasaka, K., Winkler, F., Szántó, Á. (eds.) ISSAC, pp. 296–303. ACM (2014)

    Google Scholar 

  17. Garcia, A., Voloch, J.F.: Wronskians and linear independence in fields of prime characteristic. Manuscripta Mathematica 59(4), 457–469 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldschmidt, D.: Algebraic functions and projective curves, vol. 215. Springer (2003)

    Google Scholar 

  19. Goyal, P., Misra, N., Panolan, F.: Faster deterministic algorithms for r-dimensional matching using representative sets. In: FSTTCS, pp. 237–248 (2013)

    Google Scholar 

  20. Goyal, P., Misra, P., Panolan, F., Philip, G., Saurabh, S.: Finding even subgraphs even faster (2014). CoRR abs/1409.4935

    Google Scholar 

  21. Guruswami, V., Kopparty, S.: Explicit subspace designs. In: FOCS, pp. 608–617 (2013)

    Google Scholar 

  22. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space. In: Conference in modern analysis and probability, 1982), Contemp. Math., Amer. Math. Soc. vol. 26, pp. 189–206 (1984). http://dx.doi.org/10.1090/conm/026/737400

  23. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: SODA, pp. 94–103. SIAM (2012)

    Google Scholar 

  24. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization. In: FOCS 2012, pp. 450–459. IEEE (2012)

    Google Scholar 

  25. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pp. 45–86. Academic Press, London (1977)

    Google Scholar 

  26. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Muir, T.: A Treatise on the Theory of Determinants. Dover Publications (1882)

    Google Scholar 

  28. Murota, K.: Matrices and matroids for systems analysis, vol. 20. Springer (2000)

    Google Scholar 

  29. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)

    Google Scholar 

  30. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: STOC 2012, pp. 887–898. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranabendu Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S. (2015). Deterministic Truncation of Linear Matroids. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_75

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics