Advertisement

ICALP 2015: Automata, Languages, and Programming pp 922-934

# Deterministic Truncation of Linear Matroids

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)

## Abstract

Let $$M=(E,\mathcal{I})$$ be a matroid. A $$k$$ -truncation of $$M$$ is a matroid $$M'=(E,\mathcal{I}')$$ such that for any $$A\subseteq E$$, $$A\in \mathcal{I}'$$ if and only if $$|A|\le k$$ and $$A\in \mathcal {I}$$. Given a linear representation of $$M$$ we consider the problem of finding a linear representation of the $$k$$-truncation of this matroid. This problem can be expressed as the following problem on matrices. Let $$M$$ be a $$n\times m$$ matrix over a field $$\mathbb {F}$$. A rank $$k$$ -truncation of the matrix $$M$$ is a $$k\times m$$ matrix $$M_k$$ (over $${\mathbb F}$$ or a related field) such that for every subset $$I\subseteq \{1,\ldots ,m\}$$ of size at most $$k$$, the set of columns corresponding to $$I$$ in $$M$$ has rank $$|I|$$ if and only if the corresponding set of columns in $$M_k$$ has rank $$|I|$$. A common way to compute a rank $$k$$-truncation of a $$n \times m$$ matrix is to multiply the matrix with a random $$k\times n$$ matrix (with the entries from a field of an exponential size), yielding a simple randomized algorithm. So a natural question is whether it possible to obtain a rank $$k$$-truncation of a matrix, deterministically. In this paper we settle this question for matrices over any field in which the field operations can be done efficiently. This includes any finite field and the field of rationals ($$\mathbb Q$$).

Our algorithms are based on the properties of the classical Wronskian determinant, and the folded Wronskian determinant, which was recently introduced by Guruswami and Kopparty [ FOCS, 2013 ], and was implicitly present in the work of Forbes and Shpilka [ STOC, 2012 ]. These were used in the context of subspace designs, and reducing randomness for polynomial identity testing and other related problems. Our main conceptual contribution in this paper is to show that the Wronskian determinant can also be used to obtain a representation of the truncation of a linear matroid in deterministic polynomial time. Finally, we use our results to derandomize several parameterized algorithms, including an algorithm for computing $$\ell$$ -Matroid Parity, to which several problems like $$\ell$$ -Matroid Intersection can be reduced.

## Keywords

Linear Independence Deterministic Algorithm Representative Family Subspace Design Matroid Intersection
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar 16, 447–452 (1965)
2. 2.
Bostan, A., Dumas, P.: Wronskians and linear independence. The American Mathematical Monthly 117(8), 722–727 (2010)
3. 3.
Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)
4. 4.
Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003). http://dx.doi.org/10.1002/rsa.10073
5. 5.
Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multiplicities, with applications to kakeya sets and mergers. In: FOCS, pp. 181–190. IEEE (2009)Google Scholar
6. 6.
Fomin, F.V., Golovach, P.A.: Long circuits and large euler subgraphs. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 493–504. Springer, Heidelberg (2013)
7. 7.
Fomin, F.V., Golovach, P.A.: Parameterized complexity of connected even/odd subgraph problems. J. Comput. Syst. Sci. 80(1), 157–179 (2014)
8. 8.
Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014) Google Scholar
9. 9.
Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms (2013). CoRR abs/1304.4626Google Scholar
10. 10.
Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA, pp. 142–151 (2014)Google Scholar
11. 11.
Forbes, M.A., Saptharishi, R., Shpilka, A.: Hitting sets for multilinear read-once algebraic branching programs, in any order. In: Shmoys, D.B. (ed.) STOC, pp. 867–875. ACM (2014)Google Scholar
12. 12.
Forbes, M.A., Shpilka, A.: On identity testing of tensors, low-rank recovery and compressed sensing. In: STOC, pp. 163–172. ACM (2012)Google Scholar
13. 13.
Frankl, P.: An extremal problem for two families of sets. European J. Combin. 3(2), 125–127 (1982)
14. 14.
Gabizon, A.: Deterministic Extraction from Weak Random Sources. Monographs in Theoretical Computer Science. An EATCS Series. Springer (2011)Google Scholar
15. 15.
Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields. Combinatorica 28(4), 415–440 (2008)
16. 16.
Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Nabeshima, K., Nagasaka, K., Winkler, F., Szántó, Á. (eds.) ISSAC, pp. 296–303. ACM (2014)Google Scholar
17. 17.
Garcia, A., Voloch, J.F.: Wronskians and linear independence in fields of prime characteristic. Manuscripta Mathematica 59(4), 457–469 (1987)
18. 18.
Goldschmidt, D.: Algebraic functions and projective curves, vol. 215. Springer (2003)Google Scholar
19. 19.
Goyal, P., Misra, N., Panolan, F.: Faster deterministic algorithms for r-dimensional matching using representative sets. In: FSTTCS, pp. 237–248 (2013)Google Scholar
20. 20.
Goyal, P., Misra, P., Panolan, F., Philip, G., Saurabh, S.: Finding even subgraphs even faster (2014). CoRR abs/1409.4935Google Scholar
21. 21.
Guruswami, V., Kopparty, S.: Explicit subspace designs. In: FOCS, pp. 608–617 (2013)Google Scholar
22. 22.
Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space. In: Conference in modern analysis and probability, 1982), Contemp. Math., Amer. Math. Soc. vol. 26, pp. 189–206 (1984). http://dx.doi.org/10.1090/conm/026/737400
23. 23.
Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: SODA, pp. 94–103. SIAM (2012)Google Scholar
24. 24.
Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization. In: FOCS 2012, pp. 450–459. IEEE (2012)Google Scholar
25. 25.
Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pp. 45–86. Academic Press, London (1977)Google Scholar
26. 26.
Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)
27. 27.
Muir, T.: A Treatise on the Theory of Determinants. Dover Publications (1882)Google Scholar
28. 28.
Murota, K.: Matrices and matroids for systems analysis, vol. 20. Springer (2000)Google Scholar
29. 29.
Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014) Google Scholar
30. 30.
Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: STOC 2012, pp. 887–898. ACM (2012)Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2015

## Authors and Affiliations

• Daniel Lokshtanov
• 1
• Pranabendu Misra
• 2
Email author
• Fahad Panolan
• 1
• 2
• Saket Saurabh
• 1
• 2
1. 1.University of BergenBergenNorway
2. 2.Institute of Mathematical SciencesChennaiIndia