Uniform Kernelization Complexity of Hitting Forbidden Minors

  • Archontia C. Giannopoulou
  • Bart M. P. Jansen
  • Daniel Lokshtanov
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)


The \(\mathcal {F}\) -Minor-Free Deletion problem asks, for a fixed set \(\mathcal {F}\) and an input consisting of a graph G and integer k, whether k vertices can be removed from G such that the resulting graph does not contain any member of \(\mathcal {F} \) as a minor. Fomin et al. (FOCS 2012) showed that the special case when \(\mathcal {F} \) contains at least one planar graph has a kernel of size \(f(\mathcal {F}) \cdot k^{g(\mathcal {F})}\) for some functions f and g. They left open whether this Planar \(\mathcal {F}\) -Minor-Free Deletion problem has kernels whose size is uniformly polynomial, of the form \(f(\mathcal {F}) \cdot k^c\) for some universal constant c. We prove that some Planar \(\mathcal {F}\) -Minor-Free Deletion problems do not have uniformly polynomial kernels (unless NP \(\subseteq \) coNP/poly), not even when parameterized by the vertex cover number. On the positive side, we consider the problem of determining whether k vertices can be removed to obtain a graph of treedepth at most \(\eta \). We prove that this problem admits uniformly polynomial kernels with \({\mathcal {O}}(k^6)\) vertices for every fixed \(\eta \).


Kernelization Treedepth Minor-free deletion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 641–650. ACM-SIAM (2008)Google Scholar
  2. 2.
    Bodlaender, H., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638. IEEE (2009)Google Scholar
  3. 3.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for structural parameterizations of pathwidth. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 352–363. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. In: Proc. 46th STOC, pp. 60–69 (2014)Google Scholar
  5. 5.
    Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 159–168. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Dell, H., Marx, D.: Kernelization of packing problems. In: Proc. 23rd SODA, pp. 68–81 (2012)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)Google Scholar
  8. 8.
    Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Proc. 21st SODA, pp. 503–510 (2010)Google Scholar
  9. 9.
    Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor problems: When does a small vertex cover help? J. Comput. System Sci. 80(2), 468–495 (2014)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden minors: approximation and kernelization. In: Proc. 28th STACS, pp. 189–200 (2011)Google Scholar
  11. 11.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\cal F\)-Deletion: approximation, kernelization and optimal FPT algorithms. In: Proc. 53rd FOCS, pp. 470–479 (2012)Google Scholar
  12. 12.
    Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Sánchez Villaamil, F., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 529–540. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform kernelization complexity of hitting forbidden minors (2015). CoRR, abs/1502.03965Google Scholar
  14. 14.
    Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proc. 23rd SODA, pp. 104–113 (2012)Google Scholar
  15. 15.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Nesetril, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: A faster parameterized algorithm for treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 931–942. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35(1), 39–61 (1983)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B 41(1), 92–114 (1986)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63(1), 65–110 (1995)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Archontia C. Giannopoulou
    • 1
  • Bart M. P. Jansen
    • 2
  • Daniel Lokshtanov
    • 3
  • Saket Saurabh
    • 4
  1. 1.University of WarsawWarsawPoland
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.University of BergenBergenNorway
  4. 4.Institute of Mathematical SciencesChennaiIndia

Personalised recommendations