Lower Bounds for the Graph Homomorphism Problem

  • Fedor V. Fomin
  • Alexander Golovnev
  • Alexander S. Kulikov
  • Ivan Mihajlin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)


The graph homomorphism problem (HOM) asks whether the vertices of a given n-vertex graph G can be mapped to the vertices of a given h-vertex graph H such that each edge of G is mapped to an edge of H. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 2-CSP problem. In this paper, we prove several lower bounds for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound \(2^{\Omega \left( \frac{n \log h}{\log \log h}\right) }\). This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound \(2^{\mathcal {O}(n\log {h})}\) is almost asymptotically tight.

We also investigate what properties of graphs G and H make it difficult to solve HOM(GH). An easy observation is that an \(\mathcal {O}(h^n)\) upper bound can be improved to \(\mathcal {O}(h^{{\text {vc}}(G)})\) where \({\text {vc}}(G)\) is the minimum size of a vertex cover of G. The second lower bound \(h^{\Omega ({\text {vc}}(G))}\) shows that the upper bound is asymptotically tight. As to the properties of the “right-hand side” graph H, it is known that HOM(GH) can be solved in time \((f(\Delta (H)))^n\) and \((f({\text {tw}}(H)))^n\) where \(\Delta (H)\) is the maximum degree of H and \({\text {tw}}(H)\) is the treewidth of H. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number \(\chi (H)\) does not exceed \({\text {tw}}(H)\) and \(\Delta (H)+1\), it is natural to ask whether similar upper bounds with respect to \(\chi (H)\) can be obtained. We provide a negative answer by establishing a lower bound \((f(\chi (H)))^n\) for every function f. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austrin, P.: Towards sharp inapproximability for any 2-CSP. SIAM J. Comput. 39(6), 2430–2463 (2010)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barto, L., Kozik, M., Niven, T.: Graphs, polymorphisms and the complexity of homomorphism problems. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 789–796 (2008)Google Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Computing 39(2), 546–563 (2009)MATHCrossRefGoogle Scholar
  4. 4.
    Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Computer and System Sciences 72(8), 1346–1367 (2006)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40–42), 3736–3756 (2010)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)Google Scholar
  7. 7.
    Diaz, J., Serna, M., Thilikos, D.M.: Counting \(H\)-colorings of partial \(k\)-trees. Theoretical Computer Science 281, 291–309 (2002)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Computational complexity of the distance constrained labeling problem for trees (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Computer Science Review 2(2), 97–111 (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory of Computing Systems 41(2), 381–393 (2007)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  14. 14.
    Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5(4), 586–595 (1992)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1) (2007)Google Scholar
  16. 16.
    Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2, 1)-labeling of graphs. Algorithmica 59(2), 169–194 (2011)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Combinatorial Theory Ser. B 48(1), 92–110 (1990)MATHCrossRefGoogle Scholar
  18. 18.
    Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004) MATHCrossRefGoogle Scholar
  19. 19.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Computer and System Sciences 63(4), 512–530 (2001)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Junosza-Szaniawski, K., Kratochvíl, J., Liedloff, M., Rossmanith, P., Rzazewski, P.: Fast exact algorithm for l(2, 1)-labeling of graphs. Theor. Comput. Sci. 505, 42–54 (2013)MATHCrossRefGoogle Scholar
  21. 21.
    Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3), 66–67 (1976)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Lokshtanov, D.: Private communication (2014)Google Scholar
  23. 23.
    Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 760–776. SIAM (2011)Google Scholar
  24. 24.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of EATCS 3(105) (2013)Google Scholar
  25. 25.
    Lovász, L.: Large networks and graph limits, vol. 60. American Mathematical Soc. (2012)Google Scholar
  26. 26.
    Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 245–254 (2008)Google Scholar
  28. 28.
    Rzażewski, P.: Exact algorithm for graph homomorphism and locally injective graph homomorphism. Inf. Process. Lett. 114(7), 387–391 (2014)MATHCrossRefGoogle Scholar
  29. 29.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2005)Google Scholar
  30. 30.
    Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  31. 31.
    Wahlström, M.: Problem 5.21. time complexity of graph homomorphism. In: Thore Husfeldt, Dieter Kratsch, R.P., Sorkin, G. (eds.) Exact Complexity of NP-Hard Problems. Dagstuhl Seminar 10441 Final Report. Dagstuhl (2010)Google Scholar
  32. 32.
    Wahlström, M.: New plain-exponential time classes for graph homomorphism. Theory of Computing Systems 49(2), 273–282 (2011)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fedor V. Fomin
    • 1
    • 3
  • Alexander Golovnev
    • 2
    • 3
  • Alexander S. Kulikov
    • 3
  • Ivan Mihajlin
    • 3
    • 4
  1. 1.University of BergenBergenNorway
  2. 2.New York UniversityNew YorkUSA
  3. 3.St. Petersburg Department of Steklov Institute of MathematicsSaint PetersburgRussia
  4. 4.UC San DiegoSan DiegoUSA

Personalised recommendations