Advertisement

Design of Dynamic Algorithms via Primal-Dual Method

  • Sayan BhattacharyaEmail author
  • Monika Henzinger
  • Giuseppe F. Italiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9134)

Abstract

In this paper, we develop a dynamic version of the primal-dual method for optimization problems, and apply it to obtain the following results. (1) For the dynamic set-cover problem, we maintain an \(O(f^2)\)-approximately optimal solution in \(O(f \cdot \log (m+n))\) amortized update time, where \(f\) is the maximum “frequency” of an element, \(n\) is the number of sets, and \(m\) is the maximum number of elements in the universe at any point in time. (2) For the dynamic \(b\)-matching problem, we maintain an \(O(1)\)-approximately optimal solution in \(O(\log ^3 n)\) amortized update time, where \(n\) is the number of nodes in the graph.

Keywords

Online Algorithm Vertex Cover Input Graph Dynamic Version Dynamic Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms 2, 198–203 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in \({O}(\log n)\) update time. In: FOCS, pp. 383–392 (2011)Google Scholar
  3. 3.
    Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data structures for vertex cover and matching. In: Procs. 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pp. 785–804 (2015)Google Scholar
  4. 4.
    Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science 3(2–3), 93–263 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for linear programs. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 171–181. Princeton University Press (1956)Google Scholar
  6. 6.
    Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 2nd edn., vol. 1, pp. 9.1–9.28. CRC Press (2009)Google Scholar
  7. 7.
    Gupta, M., Peng, R.: Fully dynamic \((1+\epsilon )\)-approximate matchings. In: FOCS, pp. 548–557 (2013)Google Scholar
  8. 8.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maximal matching. In: STOC, pp. 745–754 (2013)Google Scholar
  10. 10.
    Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: STOC, pp. 457–464 (2010)Google Scholar
  11. 11.
    Vazirani, V.: Approximation Algorithms. Springer-Verlag, NY (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sayan Bhattacharya
    • 1
    Email author
  • Monika Henzinger
    • 2
  • Giuseppe F. Italiano
    • 3
  1. 1.Institute of Mathematical SciencesChennaiIndia
  2. 2.University of ViennaViennaAustria
  3. 3.Università di Roma “Tor Vergata”RomeItaly

Personalised recommendations