Advertisement

The Complexity of Synthesis from Probabilistic Components

  • Krishnendu ChatterjeeEmail author
  • Laurent Doyen
  • Moshe Y. Vardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

The synthesis problem asks for the automatic construction of a system from its specification. In the traditional setting, the system is “constructed from scratch” rather than composed from reusable components. However, this is rare in practice, and almost every non-trivial software system relies heavily on the use of libraries of reusable components. Recently, Lustig and Vardi introduced dataflow and controlflow synthesis from libraries of reusable components. They proved that dataflow synthesis is undecidable, while controlflow synthesis is decidable. The problem of controlflow synthesis from libraries of probabilistic components was considered by Nain, Lustig and Vardi, and was shown to be decidable for qualitative analysis (that asks that the specification be satisfied with probability 1). Our main contribution for controlflow synthesis from probabilistic components is to establish better complexity bounds for the qualitative analysis problem, and to show that the more general quantitative problem is undecidable. For the qualitative analysis, we show that the problem (i) is EXPTIME-complete when the specification is given as a deterministic parity word automaton, improving the previously known 2EXPTIME upper bound; and (ii) belongs to UP \(\cap \) coUP and is parity-games hard, when the specification is given directly as a parity condition on the components, improving the previously known EXPTIME upper bound.

Keywords

Pure Strategy Index Function Stochastic Game Synthesis Problem Exit State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, D., Miltersen, P.B.: The Complexity of Solving Stochastic Games on Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 112–121. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Avni, G., Kupferman, O.: Synthesis from Component Libraries with Costs. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 156–172. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind Series). The MIT Press (2008)Google Scholar
  4. 4.
    Chatterjee, K.: Stochastic \(\omega \)-regular Games. PhD thesis, UC Berkeley (2007)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Nain, S., Vardi, M.Y.: The Complexity of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 242–257. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Vardi. M. Y.: The complexity of synthesis from probabilistic components. CoRR, abs/1502.04844 (2015)Google Scholar
  7. 7.
    Chatterjee, K., Henzinger, T.A.: Reduction of stochastic parity to stochastic mean-payoff games. IPL 106(1), 1–7 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 114–123 (2004)Google Scholar
  9. 9.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    De Crescenzo, I., La Torre, S.: Modular Synthesis with Open Components. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 96–108. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  12. 12.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Nain, S., Lustig, Y., Vardi, M.Y.: Synthesis from probabilistic components. LMCS 10(2) (2014)Google Scholar
  15. 15.
    Paz, A.: Introduction to probabilistic automata. Academic Press Inc. (1971)Google Scholar
  16. 16.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190. ACM Press (1989)Google Scholar
  17. 17.
    Sifakis, J.: A framework for component-based construction extended abstract. In: SFEM 2005, pp. 293–300 (2005)Google Scholar
  18. 18.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS 1985, pp. 327–338 (1985)Google Scholar
  19. 19.
    Vardi, M.Y.: Probabilistic Linear-Time Model Checking: An Overview of the Automata-Theoretic Approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
    Email author
  • Laurent Doyen
    • 2
  • Moshe Y. Vardi
    • 3
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.CNRS and LSV, ENS CachanCachanFrance
  3. 3.Rice UniversityHoustonUSA

Personalised recommendations