Normalization Phenomena in Asynchronous Networks

  • Amin Karbasi
  • Johannes LenglerEmail author
  • Angelika Steger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)


In this work we study a diffusion process in a network that consists of two types of vertices: inhibitory vertices (those obstructing the diffusion) and excitatory vertices (those facilitating the diffusion). We consider a continuous time model in which every edge of the network draws its transmission time randomly. For such an asynchronous diffusion process it has been recently proven that in Erdős-Rényi random graphs a normalization phenomenon arises: whenever the diffusion starts from a large enough (but still tiny) set of active vertices, it only percolates to a certain level that depends only on the activation threshold and the ratio of inhibitory to excitatory vertices. In this paper we extend this result to all networks in which the percolation process exhibits an explosive behaviour. This includes in particular inhomogeneous random networks, as given by Chung-Lu graphs with degree parameter \(\beta \in (2,3)\).


Random Graph Percolation Process Active Neighbor Normalization Phenomenon Explosive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web. Science 287(5461), 2115–2115 (2000)CrossRefGoogle Scholar
  2. 2.
    Amini, H., Fountoulakis, N.: Bootstrap Percolation in Power-Law Random Graphs. Journal of Statistical Physics 155(1), 72–92 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Transactions of the American Mathematical Society (2012)Google Scholar
  4. 4.
    Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions. The Annals of Probability, 1329–1380 (2009)Google Scholar
  5. 5.
    Balogh, J., Peres, Y., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Combinatorics, Probability & Computing 15(5), 715–730 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Structures & Algorithms 30(1–2), 257–286 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Breskin, I., Soriano, J., Moses, E., Tlusty, T.: Percolation in living neural networks. Physical Review Letters (2006)Google Scholar
  9. 9.
    Chalupa, J., Leath, P., Reich, G.: Bootstrap percolation on a bethe lattice. Journal of Physics C: Solid State Physics 12(1), L31 (1979)CrossRefGoogle Scholar
  10. 10.
    Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences 99(25), 15879–15882 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Reviews of Modern Physics 80(4), 1275 (2008)CrossRefGoogle Scholar
  12. 12.
    Einarsson, H., Lengler, J., Panagiotou, K., Mousset, F., Steger, A.: Bootstrap percolation with inhibition (2014). arXiv preprint arXiv:1410.3291
  13. 13.
    Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262. ACM (1999)Google Scholar
  14. 14.
    Grimmett, G., Stirzaker, D.: One Thousand Exercises in Probability. OUP Oxford (2001)Google Scholar
  15. 15.
    Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probability Theory and Related Fields 125(2), 195–224 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: ACM SIGKDD Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  17. 17.
    Lelarge, M.: Diffusion and cascading behavior in random networks. Games and Economic Behavior 75(2), 752–775 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Physical Review E 61(5), 5678 (2000)CrossRefGoogle Scholar
  19. 19.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  20. 20.
    Toninelli, C., Biroli, G., Fisher, D.S.: Jamming percolation and glass transitions in lattice models. Physical review letters 96(3), 035702 (2006)CrossRefGoogle Scholar
  21. 21.
    Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph (2011). arXiv preprint arXiv:1111.4503

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Amin Karbasi
    • 1
  • Johannes Lengler
    • 2
    Email author
  • Angelika Steger
    • 2
  1. 1.School of Engineering and Applied ScienceYale UniversityNew HavenUSA
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations