Secretary Markets with Local Information

  • Ning Chen
  • Martin Hoefer
  • Marvin Künnemann
  • Chengyu Lin
  • Peihan Miao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

The secretary model is a popular framework for the analysis of online admission problems beyond the worst case. In many markets, however, decisions about admission have to be made in a decentralized fashion and under competition. We cope with this problem and design algorithms for secretary markets with limited information. In our basic model, there are m firms and each has a job to offer. n applicants arrive iteratively in random order. Upon arrival of an applicant, a value for each job is revealed. Each firm decides whether or not to offer its job to the current applicant without knowing the strategies, actions, or values of other firms. Applicants decide to accept their most preferred offer.

We consider the social welfare of the matching and design a decentralized randomized thresholding-based algorithm with ratio \(O(\log n)\) that works in a very general sampling model. It can even be used by firms hiring several applicants based on a local matroid. In contrast, even in the basic model we show a lower bound of \(\Omega (\log n/(\log \log n))\) for all thresholding-based algorithms. Moreover, we provide secretary algorithms with constant competitive ratios, e.g., when values of applicants for different firms are stochastically independent. In this case, we can show a constant ratio even when each firm offers several different jobs, and even with respect to its individually optimal assignment. We also analyze several variants with stochastic correlation among applicant values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. SIGecom Exchanges 7(2) (2008)Google Scholar
  2. 2.
    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: Proc. 18th Symp. Discrete Algorithms (SODA), pp. 434–443 (2007)Google Scholar
  3. 3.
    Devanur, N., Hayes, T.: The adwords problem: Online keyword matching with budgeted bidders under random permutations. In: Proc. 10th Conf. Electronic Commerce (EC), pp. 71–78 (2009)Google Scholar
  4. 4.
    Devanur, N., Jain, K., Sivan, B., Wilkens, C.: Near optimal online algorithms and fast approximation algorithms for resource allocation problems. In: Proc. 12th Conf. Electronic Commerce (EC), pp. 29–38 (2011)Google Scholar
  5. 5.
    Dimitrov, N., Plaxton, G.: Competitive weighted matching in transversal matroids. Algorithmica 62(1–2), 333–348 (2012)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dinitz, M., Kortsarz, G.: Matroid secretary for regular and decomposable matroids. SIAM J. Comput. 43(5), 1807–1830 (2014)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dynkin, E.: The optimum choice of the instant for stopping a Markov process. Sov. Math. Dokl. 4, 627–629 (1963)MATHGoogle Scholar
  8. 8.
    Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive algorithm for the matroid secretary problem. In: Proc. 26th Symp. Discrete Algorithms (SODA), pp. 1189–1201 (2015)Google Scholar
  9. 9.
    Feldman, M., Tennenholtz, M.: Interviewing secretaries in parallel. In: Proc. 13th Conf. Electronic Commerce (EC), pp. 550–567 (2012)Google Scholar
  10. 10.
    Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online independent set beyond the worst-case: secretaries, prophets, and periods. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 508–519. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Im, S., Wang, Y.: Secretary problems: Laminar matroid and interval scheduling. In: Proc. 22nd Symp. Discrete Algorithms (SODA), pp. 1265–1274 (2011)Google Scholar
  12. 12.
    Immorlica, N., Kalai, A., Lucier, B., Moitra, A., Postlewaite, A., Tennenholtz, M.: Dueling algorithms. In: Proc. 43rd Symp. Theory of Computing (STOC), pp. 215–224 (2011)Google Scholar
  13. 13.
    Immorlica, N., Kleinberg, R.D., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Jaillet, P., Soto, J.A., Zenklusen, R.: Advances on matroid secretary problems: free order model and laminar case. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 254–265. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown distributions. In: Proc. 43rd Symp. Theory of Computing (STOC), pp. 587–596 (2011)Google Scholar
  16. 16.
    Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online packing LPs in the random-order model. In: Proc. 46th Symp. Theory of Computing (STOC), pp. 303–312 (2014)Google Scholar
  18. 18.
    Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: Proc. 16th Symp. Discrete Algorithms (SODA), pp. 630–631 (2005)Google Scholar
  19. 19.
    Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  20. 20.
    Lachish, O.: O(log log rank) competitive ratio for the matroid secretary problem. In: Proc. 55th Symp. Foundations of Computer Science (FOCS), pp. 326–335 (2014)Google Scholar
  21. 21.
    Lindley, D.: Dynamic programming and decision theory. Applied Statistics 10, 39–51 (1961)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online matching. J. ACM 54(5) (2007)Google Scholar
  23. 23.
    Molinaro, M., Ravi, R.: Geometry of online packing linear programs. Math. Oper. Res. 39(1), 46–59 (2014)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Soto, J.: Matroid secretary problem in the random-assignment model. SIAM J. Comput. 42(1), 178–211 (2013)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ning Chen
    • 1
  • Martin Hoefer
    • 2
  • Marvin Künnemann
    • 2
    • 3
  • Chengyu Lin
    • 4
  • Peihan Miao
    • 5
  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.MPI für InformatikSaarbrückenGermany
  3. 3.Saarbrücken Graduate School of Computer ScienceSaarbrückenGermany
  4. 4.Chinese University of Hong KongHong KongChina
  5. 5.University of California BerkeleyBerkeleyUSA

Personalised recommendations