Maintaining Near-Popular Matchings

  • Sayan Bhattacharya
  • Martin Hoefer
  • Chien-Chung Huang
  • Telikepalli Kavitha
  • Lisa Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

We study dynamic matching problems in graphs among agents with preferences. Agents and/or edges of the graph arrive and depart iteratively over time. The goal is to maintain matchings that are favorable to the agent population and stable over time. More formally, we strive to keep a small unpopularity factor by making only a small amortized number of changes to the matching per round. Our main result is an algorithm to maintain matchings with unpopularity factor \((\Delta +k)\) by making an amortized number of \(O(\Delta + \Delta ^2/k)\) changes per round, for any \(k > 0\). Here \(\Delta \) denotes the maximum degree of any agent in any round. We complement this result by a variety of lower bounds indicating that matchings with smaller factor do not exist or cannot be maintained using our algorithm.

As a byproduct, we obtain several additional results that might be of independent interest. First, our algorithm implies existence of matchings with small unpopularity factors in graphs with bounded degree. Second, given any matching M and any value \(\alpha \ge 1\), we provide an efficient algorithm to compute a matching \(M'\) with unpopularity factor \(\alpha \) over M if it exists. Finally, our results show the absence of voting paths in two-sided instances, even if we restrict to sequences of matchings with larger unpopularity factors (below \(\Delta )\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, D., Irving, R., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM J. Comput. 37(4), 1030–1045 (2007)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Abraham, D., Kavitha, T.: Voting paths. SIAM J. Disc. Math. 24(2), 520–537 (2010)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: Uncoordinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in \(O(\log n)\) update time. In: Proc. 52nd Symp. Foundations of Computer Science (FOCS), pp. 383–392 (2011)Google Scholar
  5. 5.
    Bhattacharya, S., Henzinger, M., Italiano, G.: Deterministic fully dynamic data structures for vertex cover and matching. In: Proc. 25th Symp. Discrete Algorithms (SODA), pp. 785–804 (2015)Google Scholar
  6. 6.
    Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 97–108. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Diamantoudi, E., Miyagawa, E., Xue, L.: Random paths to stability in the roommates problem. Games Econom. Behav. 48(1), 18–28 (2004)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gärdenfors, P.: Match making: Assignments based on bilateral preferences. Behavioural Sciences 20, 166–173 (1975)CrossRefGoogle Scholar
  9. 9.
    Gupta, M., Peng, R.: Fully dynamic (1+\(\varepsilon \))-approximate matchings. In: Proc. 54th Symp. Foundations of Computer Science (FOCS), pp. 548–557 (2013)Google Scholar
  10. 10.
    Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms. MIT Press (1989)Google Scholar
  11. 11.
    Hoefer, M.: Local matching dynamics in social networks. Inf. Comput. 222, 20–35 (2013)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoefer, M., Wagner, L.: Locally stable marriage with strict preferences. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 620–631. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Hoefer, M., Wagner, L.: Matching dynamics with constraints. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 161–174. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Huang, C., Kavitha, T.: Near-popular matchings in the roommates problem. SIAM J. Disc. Math. 27(1), 43–62 (2013)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Knuth, D.: Marriages stables et leurs relations avec d’autres problemes combinatoires. Les Presses de l’Université de Montréal (1976)Google Scholar
  16. 16.
    Manlove, D.: Algorithmics of Matching Under Preferences. World Scientific (2013)Google Scholar
  17. 17.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proc. 42nd Symp. Theory of Computing (STOC), pp. 457–464 (2010)Google Scholar
  19. 19.
    Roth, A., Sotomayor, M.O.: Two-sided Matching: A study in game-theoretic modeling and analysis. Cambridge University Press (1990)Google Scholar
  20. 20.
    Roth, A., Vate, J.V.: Random paths to stability in two-sided matching. Econometrica 58(6), 1475–1480 (1990)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sayan Bhattacharya
    • 1
  • Martin Hoefer
    • 2
  • Chien-Chung Huang
    • 3
  • Telikepalli Kavitha
    • 4
  • Lisa Wagner
    • 5
  1. 1.Institute of Mathematical SciencesChennaiIndia
  2. 2.MPI für Informatik and Saarland UniversitySaarbrückenGermany
  3. 3.Department of Computer Science and EngineeringChalmers UniversityGothenburgSweden
  4. 4.Tata Institute of Fundamental ResearchMumbaiIndia
  5. 5.Department of Computer ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations