How Much Lookahead is Needed to Win Infinite Games?

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent’s moves. For \(\omega \)-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient.

We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing \(\textsc {ExpTime}\)-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be \(\textsc {PSpace}\)-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Amer. Math. Soc. 138, 295–311 (1969)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Carayol, A., Löding, C.: Uniformization in automata theory. In: Schroeder-Heister, P., Heinzmann, G., Hodges, W., Bour, P.E. (eds.) CLMPS. College Publications, London (2012) (to appear)Google Scholar
  4. 4.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fridman, W., Löding, C., Zimmermann, M.: Degrees of lookahead in context-free infinite games. In: Bezem, M. (ed.) CSL 2011. LIPIcs, vol. 12, pp. 264–276. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Google Scholar
  6. 6.
    Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. The Journal of Symbolic Logic 48, 1105–1119 (1983)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Holtmann, M., Kaiser, L., Thomas, W.: Degrees of lookahead in regular infinite games. LMCS 8(3) (2012)Google Scholar
  8. 8.
    Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions. In: ICALP 1972, pp. 45–60 (1972)Google Scholar
  9. 9.
    Hutagalung, M., Lange, M., Lozes, É.: Buffered simulation games for Büchi automata. In: Ésik, Z., Fülöp, Z. (eds.) AFL 2014. EPTCS, vol. 151, pp. 286–300 (2014)Google Scholar
  10. 10.
    Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games? (2014). arXiv: 1412.3701
  11. 11.
    Klein, F., Zimmermann, M.: What are strategies in delay games? Borel determinacy for games with lookahead (2015). arXiv: 1504.02627
  12. 12.
    Löding, C., Winter, S.: Synthesis of deterministic top-down tree transducers from automatic tree relations. In: Peron, A., Piazza, C. (eds.) GandALF 2014. EPTCS, vol. 161, pp. 88–101 (2014)Google Scholar
  13. 13.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Thomas, W., Lescow, H.: Logical specifications of infinite computations. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 583–621. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  15. 15.
    Trakhtenbrot, B., Barzdin, I.: Finite Automata; Behavior and Synthesis. Fundamental Studies in Computer Science, vol. 1. North-Holland Publishing Company, New York. American Elsevier (1973)Google Scholar
  16. 16.
    Zimmermann, M.: Delay games with WMSO+U winning conditions. In: CSR 2015 (2015, to appear). arXiv: 1412.3978

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Reactive Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations