On the Complexity of Intersecting Regular, Context-Free, and Tree Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

We apply a construction of Cook (1971) to show that the intersection non-emptiness problem for one PDA (pushdown automaton) and a finite list of DFA’s (deterministic finite automata) characterizes the complexity class P. In particular, we show that there exist constants \(c_1\) and \(c_2\) such that for every k, intersection non-emptiness for one PDA and k DFA’s is solvable in \(O(n^{c_1 k})\) time, but is not solvable in \(O(n^{c_2 k})\) time. Then, for every k, we reduce intersection non-emptiness for one PDA and \(2^k\) DFA’s to non-emptiness for multi-stack pushdown automata with k-phase switches to obtain a tight time complexity lower bound. Further, we revisit a construction of Veanes (1997) to show that the intersection non-emptiness problem for tree automata also characterizes the complexity class P. We show that there exist constants \(c_1\) and \(c_2\) such that for every k, intersection non-emptiness for k tree automata is solvable in \(O(n^{c_1 k})\) time, but is not solvable in \(O(n^{c_2 k})\) time.

References

  1. 1.
    Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 121–133. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  2. 2.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications, October 2007Google Scholar
  4. 4.
    Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18(1), 4–18 (1971)MATHCrossRefGoogle Scholar
  5. 5.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York Inc., Secaucus (2006)Google Scholar
  6. 6.
    Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite state automata and NL versus NP. TCS 302, 257–274 (2003)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. on the Foundations of Computer Science, pp. 254–266 (1977)Google Scholar
  8. 8.
    La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization of double exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 33–48. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Lange, K.-J., Rossmanith, P.: The emptiness problem for intersections of regular languages. In: Havel, Ivan M., Koubek, Václav (eds.) MFCS 1992. LNCS, vol. 629, pp. 346–354. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  10. 10.
    Limaye, N., Mahajan, M.: Membership testing: removing extra stacks from multi-stack pushdown automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 493–504. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Lipton, R.J.: On the intersection of finite automata. Gödel’s Lost Letter and P=NP, August 2009Google Scholar
  12. 12.
    Madhusudan, P., Parlato, G.: The tree width of automata with auxiliary storage. POPL 2011 (2011)Google Scholar
  13. 13.
    Martens, W., Vansummeren, S.: Automata and logic on trees: Algorithms. ESSLLI 2007 (2007)Google Scholar
  14. 14.
    La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: LICS 2007, pp. 161–170 (2007)Google Scholar
  15. 15.
    Valiant, L.G.: Decision Procedures for Families of Deterministic Pushdown Automata. Ph.D thesis, University of Warwick, August 1973Google Scholar
  16. 16.
    Veanes, M.: On computational complexity of basic decision problems of finite tree automata. UPMAIL Technical Report 133 (1997)Google Scholar
  17. 17.
    Wehar, M.: Intersection emptiness for finite automata. Honors thesis, Carnegie Mellon University (2012)Google Scholar
  18. 18.
    Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 354–362. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Independent ResearcherLos AltosUSA
  2. 2.University at BuffaloBuffaloUSA

Personalised recommendations