Liveness of Parameterized Timed Networks

  • Benjamin Aminof
  • Sasha Rubin
  • Florian Zuleger
  • Francesco Spegni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)

Abstract

We consider the model checking problem of infinite state systems given in the form of parameterized discrete timed networks with multiple clocks. We show that this problem is decidable with respect to specifications given by B- or S-automata. Such specifications are very expressive (they strictly subsume \(\omega \)-regular specifications), and easily express complex liveness and safety properties. Our results are obtained by modeling the passage of time using symmetric broadcast, and by solving the model checking problem of parameterized systems of untimed processes communicating using k-wise rendezvous and symmetric broadcast. Our decidability proof makes use of automata theory, rational linear programming, and geometric reasoning for solving certain reachability questions in vector addition systems; we believe these proof techniques will be useful in solving related problems.

Keywords

Model Check Label Transition System Model Check Problem Simulated Path Process Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Ganzinger, H. (ed.) LICS, pp. 345–354, July 2004Google Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: Model checking of systems with manyidentical timed processes. TCS 290(1), 241–264 (2003)Google Scholar
  3. 3.
    Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  4. 4.
    Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  5. 5.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Bojanczyk, M.: Beyond \(\omega \)-regular languages. In: STACS 2010, pp. 11–16 (2010)Google Scholar
  7. 7.
    Chevallier, R., Encrenaz-Tiphene, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Formal Methods in System Design 34(1), 59–81 (2009)MATHCrossRefGoogle Scholar
  8. 8.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, pp. 352–359 (1999)Google Scholar
  10. 10.
    Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)Google Scholar
  11. 11.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. JACM 39(3), 675–735 (1992)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised interpreted systems with parameterised environments. In: IJCAI 2013 (2013)Google Scholar
  13. 13.
    Spalazzi, L., Spegni, F.: Parameterized model-checking of timed systems with conjunctive guards. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 235–251. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)MATHCrossRefGoogle Scholar
  15. 15.
    Vardi, M.Y.: An automata-theoretic approach to linear temporallogic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benjamin Aminof
    • 1
  • Sasha Rubin
    • 2
  • Florian Zuleger
    • 1
  • Francesco Spegni
    • 3
  1. 1.TU ViennaViennaAustria
  2. 2.Universitá degli Studi di Napoli “Federico II”NapoliItaly
  3. 3.Universitá Politecnica delle MarcheAnconaItaly

Personalised recommendations