Edit Distance for Pushdown Automata

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Rasmus Ibsen-Jensen
  • Jan Otop
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9135)


The edit distance between two words \(w_1, w_2\) is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform \(w_1\) to \(w_2\). The edit distance generalizes to languages \(\mathcal {L}_1, \mathcal {L}_2\), where the edit distance is the minimal number k such that for every word from \(\mathcal {L}_1\) there exists a word in \(\mathcal {L}_2\) with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to pushdown automata is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free languages. SIAM J. of Computing 1, 305–312 (1972)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS 2011, pp. 335–344 (2011)Google Scholar
  3. 3.
    Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981). http://doi.acm.org/10.1145/322234.322243 MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4) (2010)Google Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for pushdown automata. CoRR abs/1504.08259 (2015). http://arxiv.org/abs/1504.08259
  7. 7.
    Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. CoRR abs/1504.06117 (2015). http://arxiv.org/abs/1504.06117 (to appear at LICS 2015)
  8. 8.
    Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC 2014, pp. 303–312 (2014)Google Scholar
  9. 9.
    Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-compressed strings. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229–236. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Henzinger, T.A., Otop, J.: From model checking to model measuring. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Adison-Wesley Publishing Company, Reading (1979) MATHGoogle Scholar
  12. 12.
    Karp, R.: Mapping the genome: some combinatorial problems arising in molecular biology. In: STOC 93, pp. 278–285. ACM (1993)Google Scholar
  13. 13.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady. 10, 707–710 (1966)MathSciNetGoogle Scholar
  14. 14.
    Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Intl. J. of Foundations of Comp. Sci. 14, 957–982 (2003)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Okuda, T., Tanaka, E., Kasai, T.: A method for the correction of garbled words based on the levenshtein metric. IEEE Trans. Comput. 25, 172–178 (1976)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Pighizzini, G.: How hard is computing the edit distance? Information and Computation 165, 1–13 (2001)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Saha, B.: The dyck language edit distance problem in near-linear time. In: FOCS 2014, pp. 611–620 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Thomas A. Henzinger
    • 1
  • Rasmus Ibsen-Jensen
    • 1
  • Jan Otop
    • 1
  1. 1.IST AustriaWien-UmgebungAustria

Personalised recommendations