Advertisement

Path-Length and the Misperception of Speech: Insights from Network Science and Psycholinguistics

  • Michael S. VitevitchEmail author
  • Rutherford Goldstein
  • Elizabeth Johnson
Part of the Understanding Complex Systems book series (UCS)

Abstract

Using the analytical methods of network science we examined what could be retrieved from the lexicon when a spoken word is misperceived. To simulate misperceptions in the laboratory, we used a variant of the semantic associates task—the phonological associate task—in which participants heard an English word and responded with the first word that came to mind that sounded like the word they heard, to examine what people actually do retrieve from the lexicon when a spoken word is misperceived. Most responses were 1 link away from the stimulus word in the lexical network. Distant neighbors (words >1 link) were provided more often as responses when the stimulus word had low rather than high degree. Finally, even very distant neighbors tended to be connected to the stimulus word by a path in the lexical network. These findings have implications for the processing of spoken words, and highlight the valuable insights that can be obtained by combining the analytic tools of network science with the experimental tasks of psycholinguistics.

Keywords

Target Word Speech Perception Stimulus Word Phonological Similarity Giant Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Albert and Barabási(2002)]
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of Modern Physics 74, 47–97 (2002)CrossRefGoogle Scholar
  2. [Albert et al.(1999)Albert, Jeong, and Barabási]
    Albert, R., Jeong, H., Barabási, A.L.: Diameter of the World-Wide-Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  3. [Albert et al.(2000)Albert, Jeong, and Barabási]
    Albert, R., Jeong, H., Barabási, A.L.: The Internet’s Achilles’ Heel: Error and attack tolerance of complex networks. Nature 406, 200 (2000)CrossRefGoogle Scholar
  4. [Arbesman et al.(2010)Arbesman, Strogatz, and Vitevitch]
    Arbesman, S., Strogatz, S.H., Vitevitch, M.S.: The Structure of Phonological Networks Across Multiple Languages. International Journal of Bifurcation and Chaos 20, 679–685 (2010)CrossRefGoogle Scholar
  5. [Baayen(1991)]
    Baayen, R.H.: A stochastic process for word frequency distributions. In: Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics (1991)Google Scholar
  6. [Baayen(2001)]
    Baayen, R.H.: Word Frequency Distributions. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  7. [Bond(1999)]
    Bond, Z.S.: Slips of the Ear: Errors in the Perception of Casual Conversation. Academic Press (1999)Google Scholar
  8. [Borge-Holthoefer and Arenas(2010)]
    Borge-Holthoefer, J., Arenas, A.: Semantic Networks: Structure and Dynamics. Entropy 12, 1264–1302 (2010)CrossRefGoogle Scholar
  9. [Brown and McNeill(1966)]
    Brown, R., McNeill, D.: The “tip of the tongue” phenomenon. Journal of Verbal Learning and Verbal Behavior 5, 325–337 (1966)CrossRefGoogle Scholar
  10. [Carlson et al.(2011)Carlson, Bane, and Sonderegger]
    Carlson, M.T., Bane, M., Sonderegger, M.: Global Properties of the Phonological Networks in Child and Child-Directed Speech. In: Danis, N., Mesh, K., Sung, H. (eds.) Proceedings of the 35th Annual Boston University Conference on Language Development. BUCLD, vol. 35, pp. 97–109 (2011)Google Scholar
  11. [Chan and Vitevitch(2009)]
    Chan, K.Y., Vitevitch, M.S.: The Influence of the Phonological Neighborhood Clustering-Coefficient on SpokenWord Recognition. Journal of Experimental Psychology: Human Perception & Performance 35, 1934–1949 (2009)Google Scholar
  12. [Chan and Vitevitch(2010)]
    Chan, K.Y., Vitevitch, M.S.: Network structure influences speech production. Cognitive Science 34, 685–697 (2010)CrossRefGoogle Scholar
  13. [Clopper et al.(2006)Clopper, Pisoni, and Tierney]
    Clopper, C.G., Pisoni, D.B., Tierney, A.T.: Effects of Open-Set and Closed-Set Task Demands on Spoken Word Recognition. Journal of the American Academy of Audiology 17, 331–349 (2006)CrossRefGoogle Scholar
  14. [Coltheart et al.(1977)Coltheart, Davelaar, Jonasson, and Besner]
    Coltheart, M., Davelaar, E., Jonasson, J.T., Besner, D.: Access to the internal lexicon. In: Dornic, S. (ed.) Attention and Performance VI, pp. 535–556. Academic Press, New York (1977)Google Scholar
  15. [Cutler(1981)]
    Cutler, A.: Making up materials is a confounded nuisance, or: Will we be able to run any psycholinguistic experiments at all in 1990? Cognition 10, 65–70 (1981)CrossRefGoogle Scholar
  16. [De Deyne et al.(2012)De Deyne, Navarro, Perfors, and Storms]
    De Deyne, S., Navarro, D.J., Perfors, A., Storms, G.: Strong structure in weak semantic similarity: A graph based account. In: Proceedings of the 34th Annual Conference of the Cognitive Science Society, Sapporo, Japan (2012)Google Scholar
  17. [De Deyne and Storms(2008)]
    De Deyne, S., Storms, G.: Word association: Network and Semantic properties. Behavior Research Methods 40, 213–231 (2008)CrossRefGoogle Scholar
  18. [Diller(1978)]
    Diller, K.C.: The language teaching controversy. Newbury House, Rowley (1978)Google Scholar
  19. [Dorogovtsev and Mendes(2001)]
    Dorogovtsev, S.N., Mendes, J.F.F.: Language as an evolving word web. Proceedings of the Royal Society B: Biological Sciences 268, 2603–2606 (2001)CrossRefGoogle Scholar
  20. [Fay and Cutler(1977)]
    Fay, D., Cutler, A.: Malapropisms and the structure of the mental lexicon. Linguistic Inquiry 8, 505–520 (1977)Google Scholar
  21. [Frauenfelder et al.(1993)Frauenfelder, Baayen, Hellwig, and Schreuder]
    Frauenfelder, U.H., Baayen, R.H., Hellwig, F.M., Schreuder, R.: Neighborhood density and frequency across languages and modalities 32, 781–804 (1993)Google Scholar
  22. [Fromkin(1971)]
    Fromkin, V.A.: The Non-Anomalous Nature of Anomalous Utterances. Language 47, 27–52 (1971)CrossRefGoogle Scholar
  23. [Geer and Luce(2012)]
    Geer, M., Luce, P.A.: Neighbors of Neighbors in SpokenWord Processing (2012) (unpublished manuscript submitted for publication)Google Scholar
  24. [Goldstone et al.(2008)Goldstone, Roberts, and Gureckis]
    Goldstone, R.L., Roberts, M.E., Gureckis, T.M.: Emergent processes in group behavior. Current Directions in Psychological Science 17, 10–15 (2008)CrossRefGoogle Scholar
  25. [Greenberg and Jenkins(1964)]
    Greenberg, J.H., Jenkins, J.J.: Studies in the psychological correlates of the sound system of American English. Word 20, 157–177 (1964)Google Scholar
  26. [Hills et al.(2009)Hills, Maouene, Maouene, Sheya, and Smith]
    Hills, T.T., Maouene, M., Maouene, J., Sheya, A., Smith, L.: Longitudinal analysis of early semantic networks: Preferential attachment or preferential acquisition? Psychological Science 20, 729–739 (2009)CrossRefGoogle Scholar
  27. [Iyengar et al.(2012)Iyengar, Madhavan, Zweig, and Natarajan]
    Iyengar, S.R.S., Madhavan, C.E.V., Zweig, K.A., Natarajan, A.: Understanding Human Navigation Using Network Analysis. Topics in Cognitive Science 4, 121–134 (2012)CrossRefGoogle Scholar
  28. [Kenett et al.(2011)Kenett, Kenett, Ben-Jacob, and Faust]
    Kenett, Y.N., Kenett, D.Y., Ben-Jacob, E., Faust, M.: Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PLoS One 6, e23912 (2011)Google Scholar
  29. [Kleinberg(2000)]
    Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)CrossRefGoogle Scholar
  30. [Kučera and Francis(1967)]
    Kuçera, H., Francis, W.N.: Computational Analysis of Present Day American English. Brown University Press, Providence (1967)Google Scholar
  31. [Landauer and Streeter(1973)]
    Landauer, T.K., Streeter, L.A.: Structural differences between common and rare words: Failure of equivalence assumptions for theories of word recognition. Journal of Verbal Learning & Verbal Behavior 12, 119–131 (1973)CrossRefGoogle Scholar
  32. [Levenshtein(1966)]
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  33. [Luce et al.(2000)Luce, Goldinger, Auer, and Vitevitch]
    Luce, P.A., Goldinger, S.D., Auer Jr., E.T., Vitevitch, M.S.: Phonetic priming, neighborhood activation, and PARSYN. Perception and Psychophysics 62, 615–625 (2000)CrossRefGoogle Scholar
  34. [Luce and Large(2001)]
    Luce, P.A., Large, N.R.: Phonotactics, density and entropy in spoken word recognition. Language and Cognitive Processes 16, 565–581 (2001)CrossRefGoogle Scholar
  35. [Luce and Pisoni(1998)]
    Luce, P.A., Pisoni, D.B.: Recognizing spoken words: The neighborhood activation model. Ear and Hearing 19, 1–36 (1998)CrossRefGoogle Scholar
  36. [Marslen-Wilson(1987)]
    Marslen-Wilson, W.D.: Functional parallelism in spoken word-recognition. Cognition 25, 71–102 (1987)CrossRefGoogle Scholar
  37. [McClelland and Elman(1986)]
    McClelland, J.L., Elman, J.L.: The TRACE model of speech perception. Cognitive Psychology 18, 1–86 (1986)CrossRefGoogle Scholar
  38. [Miller(1956)]
    Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  39. [Nelson et al.(1998)Nelson, McEvoy, and Schreiber]
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida word association, rhyme, and word fragment norms (1998), http://www.usf.edu/FreeAssociation
  40. [Norris(1994)]
    Norris, D.: Shortlist: A connectionist model of continuous speech recognition. Cognition 52, 189–234 (1994)CrossRefGoogle Scholar
  41. [Nusbaum et al.(1984)Nusbaum, Pisoni, and Davis]
    Nusbaum, H.C., Pisoni, D.B., Davis, C.K.: Sizing up the Hoosier Mental Lexicon: Measuring the familiarity of 20,000 words. Research on Speech Perception Progress Report 10, 357–376 (1984)Google Scholar
  42. [Sonderegger(2011)]
    Sonderegger, M.: Applications of graph theory to an English rhyming corpus. Computer Speech and Language 25, 655–678 (2011)CrossRefGoogle Scholar
  43. [Sporns(2010)]
    Sporns, O.: Networks of the brain. MIT Press (2010)Google Scholar
  44. [Suárez et al.(2011)Suárez, Tan, Yap, and Goh]
    Suárez, L., Tan, S.H., Yap, M.J., Goh, W.D.: Observing neighborhood effects without neighbors. Psychonomic Bulletin and Review 18, 605–611 (2011)CrossRefGoogle Scholar
  45. [Vitevitch(2002a)]
    Vitevitch, M.S.: Influence of onset density on spoken-word recognition. Journal of Experimental Psychology: Human Perception and Performance 28, 270–278 (2002a)Google Scholar
  46. [Vitevitch(2002b)]
    Vitevitch, M.S.: Naturalistic and experimental analyses of word frequency and neighborhood density effects in slips of the ear. Language and Speech 45, 407–434 (2002b)CrossRefGoogle Scholar
  47. [Vitevitch(2007)]
    Vitevitch, M.S.: The spread of the phonological neighborhood influences spoken word recognition. Memory & Cognition 35, 166–175 (2007)CrossRefGoogle Scholar
  48. [Vitevitch(2008)]
    Vitevitch, M.S.: What can graph theory tell us about word learning and lexical retrieval? Journal of Speech Language Hearing Research 51, 408–422 (2008)CrossRefGoogle Scholar
  49. [Vitevitch et al.(2014)Vitevitch, Chan, and Goldstein]
    Vitevitch, M.S., Chan, K.Y., Goldstein, R.: Insights into failed lexical retrieval from network science. Cognitive Psychology 68, 1–32 (2014)CrossRefGoogle Scholar
  50. [Vitevitch et al.(2012)Vitevitch, Chan, and Roodenrys]
    Vitevitch, M.S., Chan, K.Y., Roodenrys, S.: Complex network structure influences processing in long-term and short-term memory. Journal of Memory & Language 67, 30–44 (2012)CrossRefGoogle Scholar
  51. [Vitevitch et al.(2011)Vitevitch, Ercal, and Adagarla]
    Vitevitch, M.S., Ercal, G., Adagarla, B.: Simulating retrieval from a highly clustered network: Implications for spoken word recognition. Frontiers in Psychology 2, 369 (2011), doi:10.3389/fpsyg.2011.00369CrossRefGoogle Scholar
  52. [Vitevitch and Luce(2004)]
    Vitevitch, M.S., Luce, P.A.: A web-based interface to calculate phonotactic probability for words and nonwords in English. Behavior Research Methods, Instruments, and Computers 36 (2004)Google Scholar
  53. [Vitevitch and Luce(2005)]
    Vitevitch, M.S., Luce, P.A.: Increases in phonotactic probability facilitate spoken nonword repetition. Journal of Memory & Language 52, 193–204 (2005)CrossRefGoogle Scholar
  54. [Watts and Strogatz(1998)]
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 409–410 (1998)CrossRefGoogle Scholar
  55. [Yarkoni et al.(2008)Yarkoni, Balota, and Yap]
    Yarkoni, T., Balota, D., Yap, M.J.: Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review 15, 971–979 (2008)CrossRefGoogle Scholar
  56. [Zipf(1935)]
    Zipf, G.K.: The Psychobiology of Language. Houghton-Mifflin (1935)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael S. Vitevitch
    • 1
    Email author
  • Rutherford Goldstein
    • 1
  • Elizabeth Johnson
    • 1
  1. 1.University of KansasLawrenceUSA

Personalised recommendations