Merging Cellular Automata Rules to Optimise a Solution to the Modulo-n Problem

  • Claudio L. M. Martins
  • Pedro P. B. de Oliveira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9099)

Abstract

Understanding how the composition of cellular automata rules can perform predefined computations can contribute to the general notion of emerging computing by means of locally processing components. In this context, a solution has been recently proposed to the Modulo-n Problem, which is the determination of whether the number of 1-bits in a binary string is perfectly divisible by the positive integer n. Here, we show how to optimise that solution in terms of a reduction of the number of rules required, by means of a merging operation involving of the rules´ active state transitions. The potential for a more general usage of the merging operation is also addressed.

Keywords

Cellular automata Emergent computation Rule composition Modulo-n problem Modn problem Merging Active state transitions Parity problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martins, C.L.M., de Oliveira, P.P.B.: Computing Modulo-n by Composing Cellular Automata Rules. Under submission to Fundamenta Informaticae (2015)Google Scholar
  2. 2.
    Martins, C.L.M., de Oliveira, P.P.B.: Improvement of a result on sequencing elementary cellular automata rules for solving the parity problem. Electronic Notes Theoretical Computer Science 252, 103–119 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Xu, H., Lee, K.M., Chau, H.F.: Modulo three problem with a cellular automaton solution. International Journal of Modern Physics C 14(03), 249–256 (2003)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lee, K.M., Xu, H., Chau, H.F.: Parity problem with a cellular automaton solution. Physical Review E 64, 026702/1–026702/4 (2001)Google Scholar
  5. 5.
    Betel, H., de Oliveira, P.P.B., Flocchini, P.: Solving the parity problem in one-dimensional cellular automata. Natural Computing 12(3), 323–337 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wolfram, S.: A New Kind of Science, Wolfram Media (2002)Google Scholar
  7. 7.
    Li, W.: Parameterizations of Cellular Automata Rule Space. SFI Technical Report: Preprints, Santa Fe, NM, USA (1991)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Claudio L. M. Martins
    • 2
  • Pedro P. B. de Oliveira
    • 1
    • 2
  1. 1.Faculdade de Computação e InformáticaUniversidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Pós-Graduação em Engenharia Elétrica e ComputaçãoSão PauloBrazil

Personalised recommendations