On the Periods of Spatially Periodic Preimages in Linear Bipermutive Cellular Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9099)

Abstract

In this paper, we investigate the periods of preimages of spatially periodic configurations in linear bipermutive cellular automata (LBCA). We first show that when the CA is only bipermutive and \(y\) is a spatially periodic configuration of period \(p\), the periods of all preimages of \(y\) are multiples of \(p\). We then present a connection between preimages of spatially periodic configurations of LBCA and concatenated linear recurring sequences, finding a characteristic polynomial for the latter which depends on the local rule and on the configurations. We finally devise a procedure to compute the period of a single preimage of a spatially periodic configuration \(y\) of a given LBCA, and characterise the periods of all preimages of \(y\) when the corresponding characteristic polynomial is the product of two distinct irreducible polynomials.

Keywords

Linear bipermutive cellular automata Spatially periodic configurations Preimages Surjectivity Linear recurring sequences Linear feedback shift registers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Syst. Tech. J. 46, 1853–1859 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by elementary cellular automata dynamics. Theor. Comp. Sci. 244, 219–241 (2000)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chassé, G.: Some remarks on a LFSR “disturbed" by other sequences. In: Cohen, G., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514, pp. 215–221. Springer, Heidelberg (1991) CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Dennunzio, A., Di Lena, P., Formenti, E., Margara, L.: On the directional dynamics of additive cellular automata. Theor. Comput. Sci. 410, 4823–4833 (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Dennunzio, A., Formenti, E., Weiss, M.: Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. Theor. Comput. Sci. 516, 40–59 (2014)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Systems. Mathematical Systems Theory 7(2), 138–153 (1973)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Mariot, L., Leporati, A.: Sharing secrets by computing preimages of bipermutive cellular automata. In: Wąs, J., Sirakoulis, GCh., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 417–426. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. 11.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi Milano - BicoccaMilanoItaly

Personalised recommendations