COPD pp 87-127 | Cite as

Imaging of COPD

  • Sang Min Lee
  • Song Soo Kim
  • Hye Jeon Hwang
  • Joon Beom SeoEmail author


Although imaging of patient with COPD in not recommended in clinical practice, many researches and drug trial include imaging studies in evaluation of COPD. In particular, thin-section volumetric CT covering the whole lung with following quantitative assessment has been accepted one of the essential components of studies. This chapter encompasses the whole aspect of CT in COPD, including basic CT physics, radiation dose consideration, diagnosis and visual assessment of COPD, fundamentals of quantitative assessment of emphysema, airway wall thickening, and air trapping and its clinical values. Assessment of other components of COPD includes chest wall changes, vascular changes, osteoporosis, and so on. In addition, new emerging imaging methods such as MRI, dual-energy CT, PET, and optical imaging to evaluate not only morphologic but also functional aspects of lung in COPD will be introduced. Functional imaging includes direct visualization of ventilation, perfusion, chest wall motion, and inflammation. The promising results of early studies will be introduced, highlighting the potential of imaging approach for the future studies.


  1. 1.
    Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X, et al. Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. AJR Am J Roentgenol. 2011;197(5):1165–9. doi: 10.2214/AJR.11.6533.CrossRefPubMedGoogle Scholar
  2. 2.
    Newell JD Jr, Sieren J, Hoffman EA. Development of quantitative computed tomography lung protocols. J Thorac Imaging. 2013;28(5):266–71. doi: 10.1097/RTI.0b013e31829f6796.CrossRefPubMedGoogle Scholar
  3. 3.
    Mayo JR. CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thorac Imaging. 2009;24(4):252–9. doi: 10.1097/RTI.0b013e3181c227b2.CrossRefPubMedGoogle Scholar
  4. 4.
    Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification—comparison with macroscopic and microscopic morphometry. Radiology. 2007;243(1):250–7. doi: 10.1148/radiol.2431060194.CrossRefPubMedGoogle Scholar
  5. 5.
    Kemerink GJ, Kruize HH, Lamers RJ, van Engelshoven JM. CT lung densitometry: dependence of CT number histograms on sample volume and consequences for scan protocol comparability. J Comput Assist Tomogr. 1997;21(6):948–54.PubMedGoogle Scholar
  6. 6.
    Boedeker KL, McNitt-Gray MF, Rogers SR, Truong DA, Brown MS, Gjertson DW, et al. Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology. 2004;232(1):295–301. doi: 10.1148/radiol.2321030383.CrossRefPubMedGoogle Scholar
  7. 7.
    Choo JY, Goo JM, Lee CH, Park CM, Park SJ, Shim MS. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction. Eur Radiol. 2014;24(4):799–806. doi: 10.1007/s00330-013-3078-5.CrossRefPubMedGoogle Scholar
  8. 8.
    Mets OM, Willemink MJ, de Kort FP, Mol CP, Leiner T, Oudkerk M, et al. The effect of iterative reconstruction on computed tomography assessment of emphysema, air trapping and airway dimensions. Eur Radiol. 2012;22(10):2103–9. doi: 10.1007/s00330-012-2489-z.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nishio M, Matsumoto S, Ohno Y, Sugihara N, Inokawa H, Yoshikawa T, et al. Emphysema quantification by low-dose CT: potential impact of adaptive iterative dose reduction using 3D processing. AJR Am J Roentgenol. 2012;199(3):595–601. doi: 10.2214/AJR.11.8174.CrossRefPubMedGoogle Scholar
  10. 10.
    Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013;201(3):W460–70. doi: 10.2214/AJR.12.10102.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stockley RA, Mannino D, Barnes PJ. Burden and pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(6):524–6. doi: 10.1513/pats.200904-016DS.CrossRefPubMedGoogle Scholar
  12. 12.
    Roy K, Smith J, Kolsum U, Borrill Z, Vestbo J, Singh D. COPD phenotype description using principal components analysis. Respir Res. 2009;10:41. doi: 10.1186/1465-9921-10-41.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bergin C, Muller N, Nichols DM, Lillington G, Hogg JC, Mullen B, et al. The diagnosis of emphysema. A computed tomographic-pathologic correlation. Am Rev Respir Dis. 1986;133(4):541–6.PubMedGoogle Scholar
  14. 14.
    Bafadhel M, Umar I, Gupta S, Raj JV, Vara DD, Entwisle JJ, et al. The role of CT scanning in multidimensional phenotyping of COPD. Chest. 2011;140(3):634–42. doi: 10.1378/chest.10-3007.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O'Brien C, Guest PJ, Hill SL, Stockley RA. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000;55(8):635–42.PubMedPubMedCentralGoogle Scholar
  16. 16.
    McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–75. doi: 10.1056/NEJMoa1106955.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lehouck A, Boonen S, Decramer M, Janssens W. COPD, bone metabolism, and osteoporosis. Chest. 2011;139(3):648–57. doi: 10.1378/chest.10-1427.CrossRefPubMedGoogle Scholar
  18. 18.
    Miller RR, Muller NL, Vedal S, Morrison NJ, Staples CA. Limitations of computed tomography in the assessment of emphysema. Am Rev Respir Dis. 1989;139(4):980–3. doi: 10.1164/ajrccm/139.4.980.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim SS, Seo JB, Lee HY, Nevrekar DV, Forssen AV, Crapo JD, et al. Chronic obstructive pulmonary disease: lobe-based visual assessment of volumetric CT by using standard images—comparison with quantitative CT and pulmonary function test in the COPDGene study. Radiology. 2013;266(2):626–35. doi: 10.1148/radiol.12120385.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cavigli E, Camiciottoli G, Diciotti S, Orlandi I, Spinelli C, Meoni E, et al. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol. 2009;19(7):1686–92. doi: 10.1007/s00330-009-1320-y.CrossRefPubMedGoogle Scholar
  21. 21.
    Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology. 1999;211(3):851–8. doi: 10.1148/radiology.211.3.r99jn05851.CrossRefPubMedGoogle Scholar
  22. 22.
    Group COCW, Barr RG, Berkowitz EA, Bigazzi F, Bode F, Bon J, et al. A combined pulmonary-radiology workshop for visual evaluation of COPD: study design, chest CT findings and concordance with quantitative evaluation. COPD. 2012;9(2):151–9. doi: 10.3109/15412555.2012.654923.CrossRefGoogle Scholar
  23. 23.
    Hayhurst MD, MacNee W, Flenley DC, Wright D, McLean A, Lamb D, et al. Diagnosis of pulmonary emphysema by computerised tomography. Lancet. 1984;2(8398):320–2.PubMedGoogle Scholar
  24. 24.
    Muller NL, Staples CA, Miller RR, Abboud RT. “Density mask”. An objective method to quantitate emphysema using computed tomography. Chest. 1988;94(4):782–7.PubMedGoogle Scholar
  25. 25.
    Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT—comparison with macroscopic and microscopic morphometry. Radiology. 2006;238(3):1036–43. doi: 10.1148/radiol.2382042196.CrossRefPubMedGoogle Scholar
  26. 26.
    Dirksen A, Friis M, Olesen KP, Skovgaard LT, Sorensen K. Progress of emphysema in severe alpha 1-antitrypsin deficiency as assessed by annual CT. Acta Radiol. 1997;38(5):826–32.PubMedGoogle Scholar
  27. 27.
    Dirksen A. Monitoring the progress of emphysema by repeat computed tomography scans with focus on noise reduction. Proc Am Thorac Soc. 2008;5(9):925–8. doi: 10.1513/pats.200804-033QC.CrossRefPubMedGoogle Scholar
  28. 28.
    Heussel CP, Herth FJ, Kappes J, Hantusch R, Hartlieb S, Weinheimer O, et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol. 2009;19(10):2391–402. doi: 10.1007/s00330-009-1437-z.CrossRefPubMedGoogle Scholar
  29. 29.
    Stolk J, Dirksen A, van der Lugt AA, Hutsebaut J, Mathieu J, de Ree J, et al. Repeatability of lung density measurements with low-dose computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Investig Radiol. 2001;36(11):648–51.Google Scholar
  30. 30.
    Gietema HA, Muller NL, Fauerbach PV, Sharma S, Edwards LD, Camp PG, et al. Quantifying the extent of emphysema: factors associated with radiologists’ estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad Radiol. 2011;18(6):661–71. doi: 10.1016/j.acra.2011.01.011.CrossRefPubMedGoogle Scholar
  31. 31.
    Parr DG, Stoel BC, Stolk J, Stockley RA. Pattern of emphysema distribution in alpha1-antitrypsin deficiency influences lung function impairment. Am J Respir Crit Care Med. 2004;170(11):1172–8. doi: 10.1164/rccm.200406-761OC.CrossRefPubMedGoogle Scholar
  32. 32.
    Nakano Y, Sakai H, Muro S, Hirai T, Oku Y, Nishimura K, et al. Comparison of low attenuation areas on computed tomographic scans between inner and outer segments of the lung in patients with chronic obstructive pulmonary disease: incidence and contribution to lung function. Thorax. 1999;54(5):384–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Chae EJ, Seo JB, Song JW, Kim N, Park BW, Lee YK, et al. Slope of emphysema index: an objective descriptor of regional heterogeneity of emphysema and an independent determinant of pulmonary function. AJR Am J Roentgenol. 2010;194(3):W248–55. doi: 10.2214/AJR.09.2672.CrossRefPubMedGoogle Scholar
  34. 34.
    Nakano Y, Coxson HO, Bosan S, Rogers RM, Sciurba FC, Keenan RJ, et al. Core to rind distribution of severe emphysema predicts outcome of lung volume reduction surgery. Am J Respir Crit Care Med. 2001;164(12):2195–9. doi: 10.1164/ajrccm.164.12.2012140.CrossRefPubMedGoogle Scholar
  35. 35.
    Martinez-Garcia MA, Soler-Cataluna JJ, Donat Sanz Y, Catalan Serra P, Agramunt Lerma M, Ballestin Vicente J, et al. Factors associated with bronchiectasis in patients with COPD. Chest. 2011;140(5):1130–7. doi: 10.1378/chest.10-1758.CrossRefPubMedGoogle Scholar
  36. 36.
    Grydeland TB, Thorsen E, Dirksen A, Jensen R, Coxson HO, Pillai SG, et al. Quantitative CT measures of emphysema and airway wall thickness are related to D(L)CO. Respir Med. 2011;105(3):343–51. doi: 10.1016/j.rmed.2010.10.018.CrossRefPubMedGoogle Scholar
  37. 37.
    Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1102–8. doi: 10.1164/ajrccm.162.3.9907120.CrossRefPubMedGoogle Scholar
  38. 38.
    Washko GR, Dransfield MT, Estepar RS, Diaz A, Matsuoka S, Yamashiro T, et al. Airway wall attenuation: a biomarker of airway disease in subjects with COPD. J Appl Physiol. 2009;107(1):185–91. doi: 10.1152/japplphysiol.00216.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nakano Y, Wong JC, de Jong PA, Buzatu L, Nagao T, Coxson HO, et al. The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med. 2005;171(2):142–6. doi: 10.1164/rccm.200407-874OC.CrossRefPubMedGoogle Scholar
  40. 40.
    Achenbach T, Weinheimer O, Biedermann A, Schmitt S, Freudenstein D, Goutham E, et al. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol. 2008;18(12):2731–8. doi: 10.1007/s00330-008-1089-4.CrossRefPubMedGoogle Scholar
  41. 41.
    Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261(1):274–82. doi: 10.1148/radiol.11110173.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee HJ, Seo JB, Chae EJ, Kim N, Lee CW, Oh YM, et al. Tracheal morphology and collapse in COPD: correlation with CT indices and pulmonary function test. Eur J Radiol. 2011;80(3):e531–5. doi: 10.1016/j.ejrad.2010.12.062.CrossRefPubMedGoogle Scholar
  43. 43.
    Boiselle PM, Litmanovich DE, Michaud G, Roberts DH, Loring SH, Womble HM, et al. Dynamic expiratory tracheal collapse in morbidly obese COPD patients. COPD. 2013;10(5):604–10. doi: 10.3109/15412555.2013.781149.CrossRefPubMedGoogle Scholar
  44. 44.
    Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7(1):32–43. doi: 10.3109/15412550903499522.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Matsuoka S, Kurihara Y, Yagihashi K, Nakajima Y. Quantitative assessment of peripheral airway obstruction on paired expiratory/inspiratory thin-section computed tomography in chronic obstructive pulmonary disease with emphysema. J Comput Assist Tomogr. 2007;31(3):384–9. doi: 10.1097/01.rct.0000243457.00437.10.CrossRefPubMedGoogle Scholar
  46. 46.
    Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Watanabe N, Nakajima Y. Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J Roentgenol. 2008;190(3):762–9. doi: 10.2214/AJR.07.2820.CrossRefPubMedGoogle Scholar
  47. 47.
    Yamashiro T, Matsuoka S, Bartholmai BJ, San Jose Estepar R, Ross JC, Diaz A, et al. Collapsibility of lung volume by paired inspiratory and expiratory CT scans: correlations with lung function and mean lung density. Acad Radiol. 2010;17(4):489–95. doi: 10.1016/j.acra.2009.11.004.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lee YK, Oh YM, Lee JH, Kim EK, Lee JH, Kim N, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung. 2008;186(3):157–65. doi: 10.1007/s00408-008-9071-0.CrossRefPubMedGoogle Scholar
  49. 49.
    Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–5. doi: 10.1038/nm.2971.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Barbosa EM Jr, Song G, Tustison N, Kreider M, Gee JC, Gefter WB, et al. Computational analysis of thoracic multidetector row HRCT for segmentation and quantification of small airway air trapping and emphysema in obstructive pulmonary disease. Acad Radiol. 2011;18(10):1258–69. doi: 10.1016/j.acra.2011.06.004.CrossRefPubMedGoogle Scholar
  51. 51.
    Ginsburg SB, Lynch DA, Bowler RP, Schroeder JD. Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images. Acad Radiol. 2012;19(10):1241–51. doi: 10.1016/j.acra.2012.04.020.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Park YS, Seo JB, Kim N, Chae EJ, Oh YM, Lee SD, et al. Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function test. Investig Radiol. 2008;43(6):395–402. doi: 10.1097/RLI.0b013e31816901c7.CrossRefGoogle Scholar
  53. 53.
    Barr RG, Mesia-Vela S, Austin JH, Basner RC, Keller BM, Reeves AP, et al. Impaired flow-mediated dilation is associated with low pulmonary function and emphysema in ex-smokers: the emphysema and cancer action project (EMCAP) study. Am J Respir Crit Care Med. 2007;176(12):1200–7. doi: 10.1164/rccm.200707-980OC.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ross JC, Estepar RS, Diaz A, Westin CF, Kikinis R, Silverman EK, et al. Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):690–8.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Xiao C, Staring M, Shamonin D, Reiber JH, Stolk J, Stoel BC. A strain energy filter for 3D vessel enhancement with application to pulmonary CT images. Med Image Anal. 2011;15(1):112–24. doi: 10.1016/ Scholar
  56. 56.
    Matsuoka S, Washko GR, Dransfield MT, Yamashiro T, San Jose Estepar R, Diaz A, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol. 2010;17(1):93–9. doi: 10.1016/j.acra.2009.07.022.CrossRefPubMedGoogle Scholar
  57. 57.
    Harrison RA, Siminoski K, Vethanayagam D, Majumdar SR. Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22(3):447–57. doi: 10.1359/jbmr.061202.CrossRefGoogle Scholar
  58. 58.
    Ohara T, Hirai T, Muro S, Haruna A, Terada K, Kinose D, et al. Relationship between pulmonary emphysema and osteoporosis assessed by CT in patients with COPD. Chest. 2008;134(6):1244–9. doi: 10.1378/chest.07-3054.CrossRefPubMedGoogle Scholar
  59. 59.
    Kiyokawa H, Muro S, Oguma T, Sato S, Tanabe N, Takahashi T, et al. Impact of COPD exacerbations on osteoporosis assessed by chest CT scan. COPD. 2012;9(3):235–42. doi: 10.3109/15412555.2011.650243.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Marquis K, Debigare R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(6):809–13. doi: 10.1164/rccm.2107031.CrossRefPubMedGoogle Scholar
  61. 61.
    Soler-Cataluna JJ, Sanchez-Sanchez L, Martinez-Garcia MA, Sanchez PR, Salcedo E, Navarro M. Mid-arm muscle area is a better predictor of mortality than body mass index in COPD. Chest. 2005;128(4):2108–15. doi: 10.1378/chest.128.4.2108.CrossRefPubMedGoogle Scholar
  62. 62.
    Park MJ, Cho JM, Jeon KN, Bae KS, Kim HC, Choi DS, et al. Mass and fat infiltration of intercostal muscles measured by CT histogram analysis and their correlations with COPD severity. Acad Radiol. 2014;21(6):711–7. doi: 10.1016/j.acra.2014.02.003.CrossRefPubMedGoogle Scholar
  63. 63.
    Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127(6):1952–9. doi: 10.1378/chest.127.6.1952.CrossRefPubMedGoogle Scholar
  64. 64.
    Sin DD, Man SF. Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc. 2005;2(1):8–11. doi: 10.1513/pats.200404-032MS.CrossRefPubMedGoogle Scholar
  65. 65.
    Chae EJ, Seo JB, Oh YM, Lee JS, Jung Y, Lee SD. Severity of systemic calcified atherosclerosis is associated with airflow limitation and emphysema. J Comput Assist Tomogr. 2013;37(5):743–9. doi: 10.1097/RCT.0b013e318299f9e7.CrossRefGoogle Scholar
  66. 66.
    Ayres SM, Griesbach SJ, Reimold F, Evans RG. Bronchial component in chronic obstructive lung disease. Am J Med. 1974;57(2):183–91.PubMedGoogle Scholar
  67. 67.
    Pare PD, Lawson LM, Brooks LA. Patterns of response to inhaled bronchodilators in asthmatics. Am Rev Respir Dis. 1983;127(6):680–5.PubMedGoogle Scholar
  68. 68.
    Lee JS, Huh JW, Chae EJ, Seo JB, Ra SW, Lee JH, et al. Response patterns to bronchodilator and quantitative computed tomography in chronic obstructive pulmonary disease. Clin Physiol Funct Imaging. 2012;32(1):12–8. doi: 10.1111/j.1475-097X.2011.01046.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Dirksen A, Piitulainen E, Parr DG, Deng C, Wencker M, Shaker SB, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J. 2009;33(6):1345–53. doi: 10.1183/09031936.00159408.CrossRefPubMedGoogle Scholar
  70. 70.
    Kim SS, Seo JB, Kim N, Chae EJ, Lee YK, Oh YM, et al. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density. Eur J Radiol. 2014;83(1):57–63. doi: 10.1016/j.ejrad.2012.02.021.CrossRefPubMedGoogle Scholar
  71. 71.
    Parr DG, Stoel BC, Stolk J, Nightingale PG, Stockley RA. Influence of calibration on densitometric studies of emphysema progression using computed tomography. Am J Respir Crit Care Med. 2004;170(8):883–90. doi: 10.1164/rccm.200403-326OC.CrossRefPubMedGoogle Scholar
  72. 72.
    Madani A, Van Muylem A, Gevenois PA. Pulmonary emphysema: effect of lung volume on objective quantification at thin-section CT. Radiology. 2010;257(1):260–8. doi: 10.1148/radiol.10091446.CrossRefPubMedGoogle Scholar
  73. 73.
    Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J. 2009;34(4):858–65. doi: 10.1183/09031936.00167908.CrossRefPubMedGoogle Scholar
  74. 74.
    Camiciottoli G, Cavigli E, Grassi L, Diciotti S, Orlandi I, Zappa M, et al. Prevalence and correlates of pulmonary emphysema in smokers and former smokers. A densitometric study of participants in the ITALUNG trial. Eur Radiol. 2009;19(1):58–66. doi: 10.1007/s00330-008-1131-6.CrossRefPubMedGoogle Scholar
  75. 75.
    Ley-Zaporozhan J, Ley S, Kauczor HU. Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol. 2008;18(3):510–21. doi: 10.1007/s00330-007-0772-1.CrossRefPubMedGoogle Scholar
  76. 76.
    Bankier AA, O’Donnell CR, Mai VM, Storey P, De Maertelaer V, Edelman RR, et al. Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging. 2004;20(6):961–6. doi: 10.1002/jmri.20198.CrossRefPubMedGoogle Scholar
  77. 77.
    Rajaram S, Swift AJ, Capener D, Telfer A, Davies C, Hill C, et al. Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology. 2012;263(2):569–77. doi: 10.1148/radiol.12110990.CrossRefPubMedGoogle Scholar
  78. 78.
    Ley-Zaporozhan J, Ley S, Eberhardt R, Kauczor HU, Heussel CP. Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur J Radiol. 2010;73(1):43–9. doi: 10.1016/j.ejrad.2008.09.029.CrossRefPubMedGoogle Scholar
  79. 79.
    Ley-Zaporozhan J, Ley S, Kauczor HU. Proton MRI in COPD. COPD. 2007;4(1):55–65. doi: 10.1080/15412550701198719.CrossRefPubMedGoogle Scholar
  80. 80.
    Vogel-Claussen J, Renne J, Hinrichs J, Schonfeld C, Gutberlet M, Schaumann F, et al. Quantification of pulmonary inflammation after segmental allergen challenge using turbo-inversion recovery-magnitude magnetic resonance imaging. Am J Respir Crit Care Med. 2014;189(6):650–7. doi: 10.1164/rccm.201310-1825OC.CrossRefPubMedGoogle Scholar
  81. 81.
    Iwasawa T, Takahashi H, Ogura T, Asakura A, Gotoh T, Kagei S, et al. Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J Magn Reson Imaging. 2007;26(6):1530–6. doi: 10.1002/jmri.21183.CrossRefPubMedGoogle Scholar
  82. 82.
    Mayo JR, MacKay A, Muller NL. MR imaging of the lungs: value of short TE spin-echo pulse sequences. AJR Am J Roentgenol. 1992;159(5):951–6. doi: 10.2214/ajr.159.5.1414805.CrossRefPubMedGoogle Scholar
  83. 83.
    Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology. 1991;179(3):777–81. doi: 10.1148/radiology.179.3.2027991.CrossRefPubMedGoogle Scholar
  84. 84.
    Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Takahashi M, Van Cauteren M, et al. T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers. AJR Am J Roentgenol. 2011;197(2):W279–85. doi: 10.2214/AJR.10.5350.CrossRefPubMedGoogle Scholar
  85. 85.
    Takahashi M, Togao O, Obara M, van Cauteren M, Ohno Y, Doi S, et al. Ultra-short echo time (UTE) MR imaging of the lung: comparison between normal and emphysematous lungs in mutant mice. J Magn Reson Imaging. 2010;32(2):326–33. doi: 10.1002/jmri.22267.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70(5):1241–50. doi: 10.1002/mrm.24570.CrossRefPubMedGoogle Scholar
  87. 87.
    Bianchi A, Ozier A, Ousova O, Raffard G, Cremillieux Y. Ultrashort-TE MRI longitudinal study and characterization of a chronic model of asthma in mice: inflammation and bronchial remodeling assessment. NMR Biomed. 2013;26(11):1451–9. doi: 10.1002/nbm.2975.CrossRefPubMedGoogle Scholar
  88. 88.
    Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmahl A, et al. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol. 2007;17(3):716–24. doi: 10.1007/s00330-006-0373-4.CrossRefPubMedGoogle Scholar
  89. 89.
    Biederer J, Both M, Graessner J, Liess C, Jakob P, Reuter M, et al. Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology. 2003;226(1):242–9. doi: 10.1148/radiol.2261011974.CrossRefPubMedGoogle Scholar
  90. 90.
    Beckmann N, Cannet C, Zurbruegg S, Rudin M, Tigani B. Proton MRI of lung parenchyma reflects allergen-induced airway remodeling and endotoxin-aroused hyporesponsiveness: a step toward ventilation studies in spontaneously breathing rats. Magn Reson Med. 2004;52(2):258–68. doi: 10.1002/mrm.20127.CrossRefPubMedGoogle Scholar
  91. 91.
    Ogasawara N, Suga K, Zaki M, Okada M, Kawakami Y, Matsunaga N. Assessment of lung perfusion impairment in patients with pulmonary artery-occlusive and chronic obstructive pulmonary diseases with noncontrast electrocardiogram-gated fast-spin-echo perfusion MR imaging. J Magn Reson Imaging. 2004;20(4):601–11. doi: 10.1002/jmri.20150.CrossRefPubMedGoogle Scholar
  92. 92.
    Suga K, Ogasawara N, Okada M, Hara A, Matsunaga N. Potential of noncontrast electrocardiogram-gated half-fourier fast-spin-echo magnetic resonance imaging to monitor dynamically altered perfusion in regional lung. Investig Radiol. 2002;37(11):615–25. doi: 10.1097/01.RLI.0000031079.78361.7D.CrossRefGoogle Scholar
  93. 93.
    Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42(6):1033–8.PubMedGoogle Scholar
  94. 94.
    Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med. 2001;46(1):166–71.PubMedGoogle Scholar
  95. 95.
    Keilholz SD, Mai VM, Berr SS, Fujiwara N, Hagspiel KD. Comparison of first-pass Gd-DOTA and FAIRER MR perfusion imaging in a rabbit model of pulmonary embolism. J Magn Reson Imaging. 2002;16(2):168–71. doi: 10.1002/jmri.10138.CrossRefPubMedGoogle Scholar
  96. 96.
    Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36(3):345–51.PubMedGoogle Scholar
  97. 97.
    Fink C, Ley S, Kroeker R, Requardt M, Kauczor HU, Bock M. Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Investig Radiol. 2005;40(1):40–8.Google Scholar
  98. 98.
    Fink C, Ley S, Risse F, Eichinger M, Zaporozhan J, Buhmann R, et al. Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Investig Radiol. 2005;40(2):72–9.Google Scholar
  99. 99.
    Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006;174(10):1132–8. doi: 10.1164/rccm.200606-780OC.CrossRefPubMedGoogle Scholar
  100. 100.
    Sergiacomi G, Sodani G, Fabiano S, Manenti G, Spinelli A, Konda D, et al. MRI lung perfusion 2D dynamic breath-hold technique in patients with severe emphysema. In Vivo. 2003;17(4):319–24.PubMedGoogle Scholar
  101. 101.
    Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor HU. Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Investig Radiol. 2006;41(8):624–30. doi: 10.1097/01.rli.0000225399.65609.45.CrossRefGoogle Scholar
  102. 102.
    Morino S, Toba T, Araki M, Azuma T, Tsutsumi S, Tao H, et al. Noninvasive assessment of pulmonary emphysema using dynamic contrast-enhanced magnetic resonance imaging. Exp Lung Res. 2006;32(1–2):55–67. doi: 10.1080/01902140600691548.CrossRefPubMedGoogle Scholar
  103. 103.
    Ley-Zaporozhan J, Ley S, Eberhardt R, Weinheimer O, Fink C, Puderbach M, et al. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema. Eur J Radiol. 2007;63(1):76–83. doi: 10.1016/j.ejrad.2007.01.020.CrossRefPubMedGoogle Scholar
  104. 104.
    Jang YM, Oh YM, Seo JB, Kim N, Chae EJ, Lee YK, et al. Quantitatively assessed dynamic contrast-enhanced magnetic resonance imaging in patients with chronic obstructive pulmonary disease: correlation of perfusion parameters with pulmonary function test and quantitative computed tomography. Investig Radiol. 2008;43(6):403–10. doi: 10.1097/RLI.0b013e31816901ab.CrossRefGoogle Scholar
  105. 105.
    Ohno Y, Hatabu H, Murase K, Higashino T, Kawamitsu H, Watanabe H, et al. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging. 2004;20(3):353–65. doi: 10.1002/jmri.20137.CrossRefPubMedGoogle Scholar
  106. 106.
    Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging. 1997;7(1):220–5.PubMedGoogle Scholar
  107. 107.
    Brooks RA, Di Chiro G. Magnetic resonance imaging of stationary blood: a review. Med Phys. 1987;14(6):903–13.PubMedGoogle Scholar
  108. 108.
    Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714(2):265–70.PubMedGoogle Scholar
  109. 109.
    Ohno Y, Chen Q, Hatabu H. Oxygen-enhanced magnetic resonance ventilation imaging of lung. Eur J Radiol. 2001;37(3):164–71.PubMedGoogle Scholar
  110. 110.
    Bauman G, Eichinger M. Ventilation and perfusion magnetic resonance imaging of the lung. Pol J Radiol. 2012;77(1):37–46.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Ohno Y, Hatabu H. Basics concepts and clinical applications of oxygen-enhanced MR imaging. Eur J Radiol. 2007;64(3):320–8. doi: 10.1016/j.ejrad.2007.08.006.CrossRefPubMedGoogle Scholar
  112. 112.
    Ohno Y, Hatabu H, Takenaka D, Van Cauteren M, Fujii M, Sugimura K. Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med. 2002;47(6):1139–44. doi: 10.1002/mrm.10168.CrossRefPubMedGoogle Scholar
  113. 113.
    Ohno Y, Hatabu H, Takenaka D, Adachi S, Van Cauteren M, Sugimura K. Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol. 2001;177(1):185–94. doi: 10.2214/ajr.177.1.1770185.CrossRefPubMedGoogle Scholar
  114. 114.
    Kirby M, Mathew L, Wheatley A, Santyr GE, McCormack DG, Parraga G. Chronic obstructive pulmonary disease: longitudinal hyperpolarized (3)He MR imaging. Radiology. 2010;256(1):280–9. doi: 10.1148/radiol.10091937.CrossRefPubMedGoogle Scholar
  115. 115.
    Kaushik SS, Cleveland ZI, Cofer GP, Metz G, Beaver D, Nouls J, et al. Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med. 2011;65(4):1154–65. doi: 10.1002/mrm.22697.CrossRefPubMedGoogle Scholar
  116. 116.
    Altes TA, Salerno M. Hyperpolarized gas MR imaging of the lung. J Thorac Imaging. 2004;19(4):250–8.PubMedGoogle Scholar
  117. 117.
    de Lange EE, Altes TA, Patrie JT, Gaare JD, Knake JJ, Mugler JP III, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest. 2006;130(4):1055–62. doi: 10.1378/chest.130.4.1055.CrossRefPubMedGoogle Scholar
  118. 118.
    van Beek EJ, Wild JM, Kauczor HU, Schreiber W, Mugler JP III, de Lange EE. Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging. 2004;20(4):540–54. doi: 10.1002/jmri.20154.CrossRefPubMedGoogle Scholar
  119. 119.
    Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med. 1986;3(2):321–7.PubMedGoogle Scholar
  120. 120.
    Bock M. Simultaneous T2* and diffusion measurements with 3He. Magn Reson Med. 1997;38(6):890–5.PubMedGoogle Scholar
  121. 121.
    Salerno M, Altes TA, Brookeman JR, de Lange EE, Mugler JP III. Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med. 2001;46(4):667–77.PubMedGoogle Scholar
  122. 122.
    Deninger AJ, Eberle B, Ebert M, Grossmann T, Heil W, Kauczor H, et al. Quantification of regional intrapulmonary oxygen partial pressure evolution during apnea by (3)He MRI. J Magn Reson. 1999;141(2):207–16. doi: 10.1006/jmre.1999.1902.CrossRefPubMedGoogle Scholar
  123. 123.
    Deninger AJ, Eberle B, Bermuth J, Escat B, Markstaller K, Schmiedeskamp J, et al. Assessment of a single-acquisition imaging sequence for oxygen-sensitive (3)He-MRI. Magn Reson Med. 2002;47(1):105–14.PubMedGoogle Scholar
  124. 124.
    van Beek EJ, Dahmen AM, Stavngaard T, Gast KK, Heussel CP, Krummenauer F, et al. Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial. Eur Respir J. 2009;34(6):1311–21. doi: 10.1183/09031936.00138508.CrossRefPubMedGoogle Scholar
  125. 125.
    Kirby M, Svenningsen S, Owrangi A, Wheatley A, Farag A, Ouriadov A, et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology. 2012;265(2):600–10. doi: 10.1148/radiol.12120485.CrossRefPubMedGoogle Scholar
  126. 126.
    Swift AJ, Wild JM, Fichele S, Woodhouse N, Fleming S, Waterhouse J, et al. Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI. Eur J Radiol. 2005;54(3):352–8. doi: 10.1016/j.ejrad.2004.08.002.CrossRefPubMedGoogle Scholar
  127. 127.
    Salerno M, de Lange EE, Altes TA, Truwit JD, Brookeman JR, Mugler JP III. Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology. 2002;222(1):252–60. doi: 10.1148/radiol.2221001834.CrossRefPubMedGoogle Scholar
  128. 128.
    Hermosillo G, Chefd'Hotel C, Faugeras O. Variational methods for multimodal image matching. Int J Comput Vision. 2002;50(3):329–43. doi: 10.1023/A:1020830525823.CrossRefGoogle Scholar
  129. 129.
    Bauman G, Puderbach M, Deimling M, Jellus V, Chefd'hotel C, Dinkel J, et al. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med. 2009;62(3):656–64. doi: 10.1002/mrm.22031.CrossRefPubMedGoogle Scholar
  130. 130.
    Suga K, Ogasawara N, Okada M, Tsukuda T, Matsunaga N, Miyazaki M. Lung perfusion impairments in pulmonary embolic and airway obstruction with noncontrast MR imaging. J Appl Physiol. 2002;92(6):2439–51. doi: 10.1152/japplphysiol.00900.2001.CrossRefPubMedGoogle Scholar
  131. 131.
    Bauman G, Lutzen U, Ullrich M, Gaass T, Dinkel J, Elke G, et al. Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology. 2011;260(2):551–9. doi: 10.1148/radiol.11102313.CrossRefPubMedGoogle Scholar
  132. 132.
    Gierada DS, Curtin JJ, Erickson SJ, Prost RW, Strandt JA, Goodman LR. Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology. 1995;194(3):879–84. doi: 10.1148/radiology.194.3.7862995.CrossRefPubMedGoogle Scholar
  133. 133.
    Suga K, Tsukuda T, Awaya H, Takano K, Koike S, Matsunaga N, et al. Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging. 1999;10(4):510–20.PubMedGoogle Scholar
  134. 134.
    Iwasawa T, Takahashi H, Ogura T, Asakura A, Gotoh T, Shibata H, et al. Influence of the distribution of emphysema on diaphragmatic motion in patients with chronic obstructive pulmonary disease. Jpn J Radiol. 2011;29(4):256–64. doi: 10.1007/s11604-010-0552-8.CrossRefPubMedGoogle Scholar
  135. 135.
    Iwasawa T, Yoshiike Y, Saito K, Kagei S, Gotoh T, Matsubara S. Paradoxical motion of the hemidiaphragm in patients with emphysema. J Thorac Imaging. 2000;15(3):191–5.PubMedGoogle Scholar
  136. 136.
    Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys. 1979;6(1):70–1.PubMedGoogle Scholar
  137. 137.
    Rutherford RA, Pullan BR, Isherwood I. X-ray energies for effective atomic number determination. Neuroradiology. 1976;11(1):23–8.PubMedGoogle Scholar
  138. 138.
    Barbera JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, et al. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(2 Pt 1):423–9. doi: 10.1164/ajrccm.149.2.8306040.CrossRefPubMedGoogle Scholar
  139. 139.
    Hale KA, Niewoehner DE, Cosio MG. Morphologic changes in the muscular pulmonary arteries: relationship to cigarette smoking, airway disease, and emphysema. Am Rev Respir Dis. 1980;122(2):273–8.PubMedGoogle Scholar
  140. 140.
    Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, et al. Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Phys. 1998;274(6 Pt 1):L908–13.Google Scholar
  141. 141.
    Barbera JA, Roca J, Ferrer A, Felez MA, Diaz O, Roger N, et al. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 1997;10(6):1285–91.PubMedGoogle Scholar
  142. 142.
    Sandek K, Bratel T, Hellstrom G, Lagerstrand L. Ventilation-perfusion inequality and carbon dioxide sensitivity in hypoxaemic chronic obstructive pulmonary disease (COPD) and effects of 6 months of long-term oxygen treatment (LTOT). Clin Physiol. 2001;21(5):584–93.PubMedGoogle Scholar
  143. 143.
    Fuld MK, Halaweish AF, Haynes SE, Divekar AA, Guo J, Hoffman EA. Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology. 2013;267(3):747–56. doi: 10.1148/radiol.12112789.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Barbera JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J. 2003;21(5):892–905.PubMedGoogle Scholar
  145. 145.
    Ley S, Puderbach M, Fink C, Eichinger M, Plathow C, Teiner S, et al. Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol. 2005;15(8):1575–80. doi: 10.1007/s00330-005-2721-1.CrossRefPubMedGoogle Scholar
  146. 146.
    Alford SK, van Beek EJ, McLennan G, Hoffman EA. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers. Proc Natl Acad Sci U S A. 2010;107(16):7485–90. doi: 10.1073/pnas.0913880107.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Pansini V, Remy-Jardin M, Faivre JB, Schmidt B, Dejardin-Bothelo A, Perez T, et al. Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol. 2009;19(12):2834–43. doi: 10.1007/s00330-009-1475-6.CrossRefPubMedGoogle Scholar
  148. 148.
    Lee CW, Seo JB, Lee Y, Chae EJ, Kim N, Lee HJ, et al. A pilot trial on pulmonary emphysema quantification and perfusion mapping in a single-step using contrast-enhanced dual-energy computed tomography. Investig Radiol. 2012;47(1):92–7. doi: 10.1097/RLI.0b013e318228359a.CrossRefGoogle Scholar
  149. 149.
    Chandra D, Lipson DA, Hoffman EA, Hansen-Flaschen J, Sciurba FC, Decamp MM, et al. Perfusion scintigraphy and patient selection for lung volume reduction surgery. Am J Respir Crit Care Med. 2010;182(7):937–46. doi: 10.1164/rccm.201001-0043OC.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Park TS, Hong Y, Lee JS, Lee SM, Seo JB, Oh YM, et al. Efficacy of bronchoscopic lung volume reduction by endobronchial valves in patients with heterogeneous emphysema: report on the first Asian cases. J Korean Med Sci. 2014;29(10):1404–10. doi: 10.3346/jkms.2014.29.10.1404.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Gur D, Drayer BP, Borovetz HS, Griffith BP, Hardesty RL, Wolfson SK. Dynamic computed tomography of the lung: regional ventilation measurements. J Comput Assist Tomogr. 1979;3(6):749–53.PubMedGoogle Scholar
  152. 152.
    Herbert DL, Gur D, Shabason L, Good WF, Rinaldo JE, Snyder JV, et al. Mapping of human local pulmonary ventilation by xenon enhanced computed tomography. J Comput Assist Tomogr. 1982;6(6):1088–93.PubMedGoogle Scholar
  153. 153.
    Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology. 2008;248(2):615–24. doi: 10.1148/radiol.2482071482.CrossRefPubMedGoogle Scholar
  154. 154.
    Park EA, Goo JM, Park SJ, Lee HJ, Lee CH, Park CM, et al. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique. Radiology. 2010;256(3):985–97. doi: 10.1148/radiol.10091502.CrossRefPubMedGoogle Scholar
  155. 155.
    Chae EJ, Seo JB, Lee J, Kim N, Goo HW, Lee HJ, et al. Xenon ventilation imaging using dual-energy computed tomography in asthmatics: initial experience. Investig Radiol. 2010;45(6):354–61. doi: 10.1097/RLI.0b013e3181dfdae0.CrossRefGoogle Scholar
  156. 156.
    Goo HW, Yu J. Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenon-inhaled dual-energy CT in a patient with asthma. Korean J Radiol. 2011;12(3):386–9. doi: 10.3348/kjr.2011.12.3.386.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Kim WW, Lee CH, Goo JM, Park SJ, Kim JH, Park EA, et al. Xenon-enhanced dual-energy CT of patients with asthma: dynamic ventilation changes after methacholine and salbutamol inhalation. AJR Am J Roentgenol. 2012;199(5):975–81. doi: 10.2214/AJR.11.7624.CrossRefPubMedGoogle Scholar
  158. 158.
    Park SJ, Lee CH, Goo JM, Kim JH, Park EA, Jung JW, et al. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT. Eur Radiol. 2012;22(11):2441–50. doi: 10.1007/s00330-012-2516-0.CrossRefPubMedGoogle Scholar
  159. 159.
    Hachulla AL, Pontana F, Wemeau-Stervinou L, Khung S, Faivre JB, Wallaert B, et al. Krypton ventilation imaging using dual-energy CT in chronic obstructive pulmonary disease patients: initial experience. Radiology. 2012;263(1):253–9. doi: 10.1148/radiol.12111211.CrossRefPubMedGoogle Scholar
  160. 160.
    Honda N, Osada H, Watanabe W, Nakayama M, Nishimura K, Krauss B, et al. Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon. Radiology. 2012;262(1):262–8. doi: 10.1148/radiol.11110569.CrossRefPubMedGoogle Scholar
  161. 161.
    Thieme SF, Hoegl S, Nikolaou K, Fisahn J, Irlbeck M, Maxien D, et al. Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol. 2010;20(12):2882–9. doi: 10.1007/s00330-010-1866-8.CrossRefPubMedGoogle Scholar
  162. 162.
    Zhang LJ, Zhou CS, Schoepf UJ, Sheng HX, Wu SY, Krazinski AW, et al. Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol. 2013;23(10):2666–75. doi: 10.1007/s00330-013-2907-x.CrossRefPubMedGoogle Scholar
  163. 163.
    Noma S, Moskowitz GW, Herman PG, Khan A, Rojas KA. Pulmonary scintigraphy in elastase-induced emphysema in pigs. Correlation with high-resolution computed tomography and histology. Investig Radiol. 1992;27(6):429–35.Google Scholar
  164. 164.
    Suga K, Kawakami Y, Iwanaga H, Hayashi N, Seto A, Matsunaga N. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images. Ann Nucl Med. 2008;22(5):339–47. doi: 10.1007/s12149-007-0137-5.CrossRefPubMedGoogle Scholar
  165. 165.
    Argula RG, Strange C, Ramakrishnan V, Goldin J. Baseline regional perfusion impacts exercise response to endobronchial valve therapy in advanced pulmonary emphysema. Chest. 2013;144(5):1578–86. doi: 10.1378/chest.12-2826.CrossRefPubMedGoogle Scholar
  166. 166.
    Stavngaard T, Sogaard LV, Mortensen J, Hanson LG, Schmiedeskamp J, Berthelsen AK, et al. Hyperpolarized 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease. Eur J Nucl Med Mol Imaging. 2005;32(4):448–57. doi: 10.1007/s00259-004-1691-x.CrossRefPubMedGoogle Scholar
  167. 167.
    Suga K, Nishigauchi K, Kume N, Koike S, Takano K, Tokuda O, et al. Dynamic pulmonary SPECT of xenon-133 gas washout. J Nucl Med. 1996;37(5):807–14.PubMedGoogle Scholar
  168. 168.
    Amis TC, Crawford AB, Davison A, Engel LA. Distribution of inhaled 99mtechnetium labelled ultrafine carbon particle aerosol (Technegas) in human lungs. Eur Respir J. 1990;3(6):679–85.PubMedGoogle Scholar
  169. 169.
    Crawford AB, Davison A, Amis TC, Engel LA. Intrapulmonary distribution of 99mtechnetium labelled ultrafine carbon aerosol (Technegas) in severe airflow obstruction. Eur Respir J. 1990;3(6):686–92.PubMedGoogle Scholar
  170. 170.
    Cukic V, Begic A. Potential role of lung ventilation scintigraphy in the assessment of COPD. Acta Inform Med. 2014;22(3):170–3. doi: 10.5455/aim.2014.22.170-173.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Xu J, Moonen M, Johansson A, Gustafsson A, Bake B. Quantitative analysis of inhomogeneity in ventilation SPET. Eur J Nucl Med. 2001;28(12):1795–800. doi: 10.1007/s002590100649.CrossRefPubMedGoogle Scholar
  172. 172.
    Jogi J, Ekberg M, Jonson B, Bozovic G, Bajc M. Ventilation/perfusion SPECT in chronic obstructive pulmonary disease: an evaluation by reference to symptoms, spirometric lung function and emphysema, as assessed with HRCT. Eur J Nucl Med Mol Imaging. 2011;38(7):1344–52. doi: 10.1007/s00259-011-1757-5.CrossRefPubMedGoogle Scholar
  173. 173.
    Suga K, Kawakami Y, Koike H, Iwanaga H, Tokuda O, Okada M, et al. Lung ventilation-perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT. Ann Nucl Med. 2010;24(4):269–77. doi: 10.1007/s12149-010-0369-7.CrossRefPubMedGoogle Scholar
  174. 174.
    Vidal Melo MF, Winkler T, Harris RS, Musch G, Greene RE, Venegas JG. Spatial heterogeneity of lung perfusion assessed with (13)N PET as a vascular biomarker in chronic obstructive pulmonary disease. J Nucl Med. 2010;51(1):57–65. doi: 10.2967/jnumed.109.065185.CrossRefPubMedGoogle Scholar
  175. 175.
    Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Karadag F, Karul AB, Cildag O, Yilmaz M, Ozcan H. Biomarkers of systemic inflammation in stable and exacerbation phases of COPD. Lung. 2008;186(6):403–9. doi: 10.1007/s00408-008-9106-6.CrossRefPubMedGoogle Scholar
  177. 177.
    Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax. 2010;65(10):930–6. doi: 10.1136/thx.2009.130260.CrossRefPubMedGoogle Scholar
  178. 178.
    Jones HA, Marino PS, Shakur BH, Morrell NW. In vivo assessment of lung inflammatory cell activity in patients with COPD and asthma. Eur Respir J. 2003;21(4):567–73.PubMedGoogle Scholar
  179. 179.
    Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125–32. doi: 10.1164/rccm.201201-0051OC.CrossRefPubMedGoogle Scholar
  180. 180.
    Coulson JM, Rudd JH, Duckers JM, Rees JI, Shale DJ, Bolton CE, et al. Excessive aortic inflammation in chronic obstructive pulmonary disease: an 18F-FDG PET pilot study. J Nucl Med. 2010;51(9):1357–60. doi: 10.2967/jnumed.110.075903.CrossRefPubMedGoogle Scholar
  181. 181.
    Coxson HO, Quiney B, Sin DD, Xing L, McWilliams AM, Mayo JR, et al. Airway wall thickness assessed using computed tomography and optical coherence tomography. Am J Respir Crit Care Med. 2008;177(11):1201–6. doi: 10.1164/rccm.200712-1776OC.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sang Min Lee
    • 1
  • Song Soo Kim
    • 2
  • Hye Jeon Hwang
    • 3
  • Joon Beom Seo
    • 1
    Email author
  1. 1.Division of Cardiothoracic Radiology, Department of RadiologyAsan Medical Center, University of Ulsan College of MedicineSeoulSouth Korea
  2. 2.Department of RadiologyChungnam National University Hospital, Chungnam National University School of MedicineDaejeonSouth Korea
  3. 3.Department of RadiologyHallym University College of Medicine, Hallym University Sacred Heart HospitalSeoulSouth Korea

Personalised recommendations