Advertisement

COPD pp 57-63 | Cite as

Pathophysiology of COPD

  • Eun Kyung KimEmail author
Chapter
  • 1.8k Downloads

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the lung that involves complex interaction of cells and mediators. And it is characterized by progressive airflow limitation that is not fully reversible, which is caused by two pathologic processes resulted from chronic inflammation: (1) narrowing of the small airways and (2) emphysematous destruction of the lung parenchyma. Lung inflammation associated with an imbalance of proteinases and antiproteinases, and oxidative stress induced by noxious particles and gases contributes to the pathologic changes of COPD. The physiologic changes of COPD are associated with mucus hypersecretion, ciliary dysfunction, airflow limitation, pulmonary hyperinflation, gas exchange abnormalities, pulmonary hypertension, and cor pulmonale. However, the pathophysiology of COPD is complicated and largely undiscovered. This is complicated by the fact that there is heterogeneity of the disease, with some patients showing a predominant emphysema pattern, whereas in others small airway disease predominates, although many patients have a mixed pattern.

This chapter provides a general overview of the pathophysiology of COPD.

References

  1. 1.
    Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD) workshop summary. Am J Respir Crit Care Med. 2001;163(5):1256–76. doi: 10.1164/ajrccm.163.5.2101039.CrossRefPubMedGoogle Scholar
  2. 2.
    Hogg JC. Lung structure and function in COPD. Int J Tuberc Lung Dis. 2008;12(5):467–79.PubMedGoogle Scholar
  3. 3.
    Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet (London, England). 2004;364(9435):709–21. doi: 10.1016/s0140–6736(04)16900-6.CrossRefGoogle Scholar
  4. 4.
    Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1(6077):1645–8.CrossRefGoogle Scholar
  5. 5.
    Mullen JB, Wright JL, Wiggs BR, Pare PD, Hogg JC. Reassessment of inflammation of airways in chronic bronchitis. Br Med J (Clin Res Ed). 1985;291(6504):1235–9.CrossRefGoogle Scholar
  6. 6.
    Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest. 1990;85(3):682–9. doi: 10.1172/jci114492.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shao MX, Nakanaga T, Nadel JA. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L420–7. doi: 10.1152/ajplung.00019.2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Vestbo J, Lange P. Can GOLD stage 0 provide information of prognostic value in chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2002;166(3):329–32. doi: 10.1164/rccm.2112048.CrossRefPubMedGoogle Scholar
  9. 9.
    Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278(25):1355–60. doi: 10.1056/nejm196806202782501.CrossRefPubMedGoogle Scholar
  10. 10.
    Tuder RM, Petrache I, Elias JA, Voelkel NF, Henson PM. Apoptosis and emphysema: the missing link. Am J Respir Cell Mol Biol. 2003;28(5):551–4. doi: 10.1165/rcmb.F269.CrossRefPubMedGoogle Scholar
  11. 11.
    Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt 1):737–44. doi: 10.1164/ajrccm.163.3.2002117.CrossRefGoogle Scholar
  12. 12.
    O’Donnell D, Laveneziana P. Physiology and consequences of lung hyperinflation in COPD. Eur Respir Rev. 2006;15(100):61–7.CrossRefGoogle Scholar
  13. 13.
    McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–75. doi: 10.1056/NEJMoa1106955.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Black LF, Hyatt RE, Stubbs SE. Mechanism of expiratory airflow limitation in chronic obstructive pulmonary disease associated with 1-antitrypsin deficiency. Am Rev Respir Dis. 1972;105(6):891–9.PubMedGoogle Scholar
  15. 15.
    Leaver DG, Tatterfield AE, Pride NB. Contributions of loss of lung recoil and of enhanced airways collapsibility to the airflow obstruction of chronic bronchitis and emphysema. J Clin Invest. 1973;52(9):2117–28. doi: 10.1172/jci107396.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fry DL, Hyatt RE. Pulmonary mechanics: a unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects. Am J Med. 1960;29(4):672–89.CrossRefGoogle Scholar
  17. 17.
    Vinegar A, Sinnett EE, Leith DE. Dynamic mechanisms determine functional residual capacity in mice, Mus musculus. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(5):867–71.PubMedGoogle Scholar
  18. 18.
    Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370(9589):765–73.CrossRefGoogle Scholar
  19. 19.
    Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman J, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978;298(23):1277–81. doi: 10.1056/nejm197806082982303.CrossRefPubMedGoogle Scholar
  20. 20.
    Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hogg JC. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;148(5):1220–5. doi: 10.1164/ajrccm/148.5.1220.CrossRefPubMedGoogle Scholar
  21. 21.
    Matsuba K, Wright JL, Wiggs BR, Pare PD, Hogg JC. The changes in airways structure associated with reduced forced expiratory volume in one second. Eur Respir J. 1989;2(9):834–9.PubMedGoogle Scholar
  22. 22.
    Brashier BB, Kodgule R. Risk factors and pathophysiology of chronic obstructive pulmonary disease (COPD). J Assoc Physicians India. 2012;60(Suppl):17–21.PubMedGoogle Scholar
  23. 23.
    Ferguson GT. Why does the lung hyperinflate? Proc Am Thorac Soc. 2006;3(2):176–9. doi: 10.1513/pats.200508-094DO.CrossRefPubMedGoogle Scholar
  24. 24.
    Minh V, Dolan GF, Konopka RF, Moser KM. Effect of hyperinflation on inspiratory function of the diaphragm. J Appl Physiol. 1976;40(1):67–73.CrossRefGoogle Scholar
  25. 25.
    Decramer M. Hyperinflation and respiratory muscle interaction. Eur Respir J. 1997;10(4):934–41.PubMedGoogle Scholar
  26. 26.
    Calverley PMA. Dynamic hyperinflation. Proc Am Thorac Soc. 2006;3(3):239–44. doi: 10.1513/pats.200508-084SF.CrossRefPubMedGoogle Scholar
  27. 27.
    Lane DJ, Howell JB, Giblin B. Relation between airways obstruction and CO2 tension in chronic obstructive airways disease. Br Med J. 1968;3(5620):707–9.CrossRefGoogle Scholar
  28. 28.
    Barbera JA, Roca J, Ferrer A, Felez MA, Diaz O, Roger N, et al. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 1997;10(6):1285–91.CrossRefGoogle Scholar
  29. 29.
    Rodriguez-Roisin R, Drakulovic M, Rodriguez DA, Roca J, Barbera JA, Wagner PD. Ventilation-perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol (1985). 2009;106(6):1902–8. doi: 10.1152/japplphysiol.00085.2009.CrossRefGoogle Scholar
  30. 30.
    Wagner PD, Dantzker DR, Dueck R, Clausen JL, West JB. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest. 1977;59(2):203–16. doi: 10.1172/jci108630.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Barbera JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, et al. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(2 Pt 1):423–9. doi: 10.1164/ajrccm.149.2.8306040.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chaouat A, Naeije R, Weitzenblum E. Pulmonary hypertension in COPD. Eur Respir J. 2008;32(5):1371–85. doi: 10.1183/09031936.00015608.CrossRefPubMedGoogle Scholar
  33. 33.
    Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax. 2005;60(7):605–9. doi: 10.1136/thx.2005.042994.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sabit R, Bolton CE, Fraser AG, Edwards JM, Edwards PH, Ionescu AA, et al. Sub-clinical left and right ventricular dysfunction in patients with COPD. Respir Med. 2010;104(8):1171–8. doi: 10.1016/j.rmed.2010.01.020.CrossRefPubMedGoogle Scholar
  35. 35.
    Hilde JM, Skjorten I, Hansteen V, Melsom MN, Hisdal J, Humerfelt S, et al. Haemodynamic responses to exercise in patients with COPD. Eur Respir J. 2013;41(5):1031–41. doi: 10.1183/09031936.00085612.CrossRefPubMedGoogle Scholar
  36. 36.
    O’Donnell DE, Parker CM. COPD exacerbations. 3: pathophysiology. Thorax. 2006;61(4):354–61. doi: 10.1136/thx.2005.041830.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Calverley PM. Respiratory failure in chronic obstructive pulmonary disease. Eur Respir J Suppl. 2003;47:26s–30s.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Internal Medicine, CHA Bundang Medical CenterCHA University School of MedicineSeongnamSouth Korea

Personalised recommendations