Advertisement

COPD pp 17-33 | Cite as

Pathology of Chronic Obstructive Pulmonary Diseases

  • Rubin M. TuderEmail author
Chapter

Abstract

In this modern age of in-depth molecular and genetic focus on diseases, it is pressing that we revisit the fundamental pathology underlying chronic pulmonary obstructive diseases—forgetting the past limits our ability to make the best from the present. This review seeks to integrate when possible what is known about the pathology of COPD with key pathogenetic data. However, to move the field forward, investigators dedicated to COPD are required to understand the normal and diseased lung structure (qualitatively and quantitatively), including on how best determine these key parameters; there was a time, approximately more than a half a decade ago, in which these were the most exciting and hopeful developments to understand COPD. They form the foundation to better appreciate the challenge to understand COPD and, most importantly, give proper credit to key studies that, in the past 50 years, shaped our current understanding of this highly challenging disease.

References

  1. 1.
    Thurlbeck WM. Chronic airflow obstructions: correlation of structure and function. In: Petty TL, editor. Chronic obstructive pulmonary disease. New York: Marcel Decker; 1985. p. 129–203.Google Scholar
  2. 2.
    Mitchell RS, Toll G, Filley GF. The early lesions in pulmonary emphysema. Am J Med Sci. 1962;243:409–19.PubMedGoogle Scholar
  3. 3.
    Snider GL, Kleinerman LJ, Thurlbeck WM, Bengali ZH. The definition of emphysema: report of a National, Heart, Lung and Blood Institute. Division of Lung Diseases Workshop. Am Rev Respir Dis. 1985:182–5.Google Scholar
  4. 4.
    Thurlbeck WM. The internal surface area of nonemphysematous lungs. Am Rev Respir Dis. 1967;95:765–73.PubMedGoogle Scholar
  5. 5.
    Thurlbeck WM. Post-mortem lung volumes. Thorax. 1979;34:735–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Weibel ER, Gomez DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962;137:577–85.PubMedGoogle Scholar
  7. 7.
    Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169:120–4.PubMedGoogle Scholar
  8. 8.
    Tuder RM, Stacher E, Robinson J, Kumar R, Graham BB. Pathology of pulmonary hypertension. Clin Chest Med. 2013;34:639–50.PubMedGoogle Scholar
  9. 9.
    Weibel ER. A retrospective of lung morphometry: from 1963 to present. Am J Physiol Lung Cell Mol Physiol. 2013;305:L405–8.PubMedGoogle Scholar
  10. 10.
    Verbeken EK, Cauberghs M, Mertens I, Clement J, Lauweryns JM, van de Woestijne KP. The senile lung. Comparison with normal and emphysematous lungs. 1. Structural aspects. Chest. 1992;1992(101):793–9.Google Scholar
  11. 11.
    Verbeken EK, Cauberghs M, Lauweryns JM, van de Woestijne KP. Anatomy of membranous bronchioles in normal, senile and emphysematous human lungs. J Appl Physiol. 1994;1994(77):1875–84.Google Scholar
  12. 12.
    Weibel ER. Design and structure of human lung. In: Fishman AP, editor. Pulmonary diseases and disorders. New York: McGraw-Hill; 1980. p. 224–81.Google Scholar
  13. 13.
    Thurlbeck WM. Internal surface area and other measurements in emphysema. Thorax. 1967;22:483–96.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Horsfield K. Quantitative morphology and structure: functional correlations in the lung. Monogr Pathol. 1978;19:151–9.PubMedGoogle Scholar
  15. 15.
    Matsuba K, Thurlbeck WM. The number and dimensions of small airways in emphysematous lungs. Am J Pathol. 1972;67:265–75.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis. 1983;128:S42–6.PubMedGoogle Scholar
  17. 17.
    Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM. Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol. 2014;307:L338–44.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hsia CC, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181:394–418.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Liebow AA, Gough J. Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis. 1959;80:67–93.PubMedGoogle Scholar
  20. 20.
    Tuder RM, Yoshida T, Fijalkowka I, Biswal S, Petrache I. Role of lung maintenance program in the heterogeneity of lung destruction in emphysema. Proc Am Thorac Soc. 2006;3:673–9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Thurlbeck WM. Internal surface area of normal and emphysematous lungs. Aspen Emphysema Conf. 1967;10:379–93.PubMedGoogle Scholar
  22. 22.
    Verbeken EK, Cauberghs M, Mertens I, Lauweryns JM, van de Woestijne KP. Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol. 1992;72:2343–53.PubMedGoogle Scholar
  23. 23.
    Reid LM. Pathology of chronic bronchitis. Lancet. 1956:275–81.Google Scholar
  24. 24.
    Reid LM. Pathology of chronic bronchitis. Lancet. 1954;266:274–8.PubMedGoogle Scholar
  25. 25.
    Dunnill MS, Ryder R. A quantitative study of the relationship between chronic bronchitis, emphysema and smoking. Chest 1971;59: Suppl 35S+.Google Scholar
  26. 26.
    Bedrossian CW, Anderson AE Jr, Foraker AG. Bronchial morphometry in emphysema and senescence. Exp Mol Pathol. 1977;27:44–50.PubMedGoogle Scholar
  27. 27.
    Thurlbeck WM. The pathology of small airways in chronic airflow limitation. Eur J Respir Dis Suppl. 1982;121:9–18.PubMedGoogle Scholar
  28. 28.
    Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278:1355–60.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Leopold JG, Gough J. The centrilobular form of hypertrophic emphysema and its relation to chronic bronchitis. Thorax. 1957;12:219–35.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–53.Google Scholar
  31. 31.
    Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001;163:1256–76.PubMedPubMedCentralGoogle Scholar
  32. 32.
    McDonough JE, Yuan R, Suzuki M, Seyednejad N, Elliott WM, Sanchez PG, Wright AC, Gefter WB, Litzky L, Coxson HO, Pare PD, Sin DD, Pierce RA, Woods JC, McWilliams AM, Mayo JR, Lam SC, Cooper JD, Hogg JC. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–75.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nagai A, Yamawaki I, Takizawa T, Thurlbeck WM. Alveolar attachments in emphysema of human lungs. Am Rev Respir Dis. 1991;144:888–91.PubMedGoogle Scholar
  34. 34.
    Saito K, Cagle P, Berend N, Thurlbeck WM. The "destructive index" in nonemphysematous and emphysematous lungs. Morphologic observations and correlation with function. Am Rev Respir Dis. 1989;1989(139):308–12.Google Scholar
  35. 35.
    Saetta M, Shiner RJ, Angus GE, Kim WD, Wang NS, King M, Ghezzo H, Cosio MG. Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis. 1985;131:764–9.PubMedGoogle Scholar
  36. 36.
    Nagai A, Inano H, Matsuba K, Thurlbeck WM. Scanning electronmicroscopic morphometry of emphysema in humans. Am J Respir Crit Care Med. 1994;150:1411–5.PubMedGoogle Scholar
  37. 37.
    Wright GW, Kleinerman J. The J. Burns Amberson Lecture: A consideration of the etiology of emphysema in terms of contemporary knowledge. Am Rev Respir Dis 1963; 88: 605–620Google Scholar
  38. 38.
    Hyde DM, Harkema JR, Tyler NK, Plopper CG. Design-based sampling and quantitation of the respiratory airways. Toxicol Pathol. 2006;34:286–95.PubMedGoogle Scholar
  39. 39.
    Dunnill MS. Evaluation of a simple method of sampling for quantitative histological analysis. Thorax. 1964;19:443–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Dunnill MS. Quantitative methods in the study of pulmonary pathology. Thorax. 1962;17:320–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Thurlbeck WM, Dunnill MS, Hartung W, Heard BE, Heppleston AG, Ryder RC. A comparison of three methods of measuring emphysema. Hum Pathol. 1970;1:215–26.PubMedGoogle Scholar
  42. 42.
    Dunnill MS. The recognition and measurement of pulmonary emphysema. Pathol Microbiol (Basel). 1970;35:138–45.Google Scholar
  43. 43.
    Dunnill MS. Quantitative observations on the anatomy of chronic non-specific lung disease. Med Thorac. 1965;22:261–74.PubMedGoogle Scholar
  44. 44.
    Thurlbeck WM. Measurement of pulmonary emphysema. Am Rev Respir Dis. 1967;95:752–64.PubMedGoogle Scholar
  45. 45.
    Schmidt RA, Glenny RW, Godwin JD, Hampson NB, Cantino ME, Reichenbach DD. Panlobular emphysema in young intravenous Ritalin abusers. Am Rev Respir Dis. 1991;143:649–56.PubMedGoogle Scholar
  46. 46.
    Kim WD, Eidelman DH, Izquierdo JL, Ghezzo H, Saetta MP, Cosio MG. Centrilobular and panlobular emphysema in smokers. Two distinct morphologic and functional entities. Am Rev Respir Dis. 1991;144:1385–90.PubMedGoogle Scholar
  47. 47.
    Vlahovic G, Russell ML, Mercer RR, Crapo JD. Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med. 1999;160:2086–92.PubMedPubMedCentralGoogle Scholar
  48. 48.
    West WW, Nagai A, Hodgkin JE, Thurlbeck WM. The National Institutes of Health Intermittent Positive Pressure Breathing trial—pathology studies. III. The diagnosis of emphysema. Am Rev Respir Dis. 1987;135:123–9.PubMedGoogle Scholar
  49. 49.
    Hogg JC, Wright JL, Wiggs BR, Coxson HO, Opazo SA, Pare PD. Lung structure and function in cigarette smokers. Thorax. 1994;49:473–8.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Magee F, Wright JL, Wiggs BR, Pare PD, Hogg JC. Pulmonary vascular structure and function in chronic obstructive pulmonary disease. Thorax. 1988;43:183–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Scott KW. Quantitation of thick-walled peripheral lung vessels in chronic airways obstruction. Thorax. 1976;31:315–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Horsfield K, Thomas M. Morphometry of pulmonary arteries from angiograms in chronic obstructive lung disease. Thorax. 1981;36:360–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Barbera JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, Wiggs BR, Rodriguez-Roisin R. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:423–9.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations