Advertisement

Geoinformatik pp 157-184 | Cite as

Computer-gestützte Bewegungsanalyse

  • Patrick LaubeEmail author
  • Joachim Gudmundsson
  • Thomas Wolle
Chapter
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Die jüngsten Fortschritte der Trackingtechnologie produzieren Geodaten, welche die Bewegung mobiler Objekte mit einer bisher unerreichten räumlichen und zeitlichen Auflösung erfassen. Diese neue, von Natur aus raumzeitliche Art geographischer Informationen ermöglicht neue Einsichten in dynamische geographische Prozesse, stellt aber auch die traditionell eher statischen Werkzeuge der Raumanalyse infrage. Dieses Kapitel gibt einen Überblick über Bewegungsdaten im Allgemeinen, die Theorie der Bewegungsmodellierung und -analyse sowie eine Reihe wichtiger Anwendungsfelder der computer-gestützten Bewegungsanalyse. Schließlich geht das Kapitel auf Überlegungen bezüglich der Privatsphäre ein, welche für die Analyse der Bewegung von Menschen sehr wichtig sind.

Schlüsselwörter

Trajektorien Bewegung Raum-zeitliches GIS Data-mining Konzeptuelle Datenmodelle Segmentierung t4ht@.Ahnlichkeit Visualisierung Visual Analytics 

Literatur

  1. 1.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  2. 2.
    Kellerer, W., Bettstetter, C., Schwingenschlogl, C., Sties, P., Steinberg, K.E.: (Auto) mobile communication in a heterogeneous and converged world. IEEE Pers. Commun. 8, 41–47 (2001)Google Scholar
  3. 3.
    Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014)CrossRefGoogle Scholar
  4. 4.
    Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E., Spiegel, O.: Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. USA 105, 19060–19065 (2008)CrossRefGoogle Scholar
  5. 5.
    Galton, A.: Dynamic collectives and their collective dynamics. In: Cohn, A.G., Mark, D.M. (Hrsg.) Spatial Information Theory, Proceedings. Lecture Notes in Computer Science, Bd. 3693, S. 300–315. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Claussen, D.L., Finkler, M.S., Smith, M.M.: Thread trailing of turtles: methods for evaluating spatial movements and pathway structure. Can. J. Zool. 75, 2120–2128 (1997)CrossRefGoogle Scholar
  7. 7.
    Tomkiewicz, S.M., Fuller, M.R., Kie, J.G., Bates, K.K.: Global positioning system and associated technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B 365(1550), 2163–2176 (2010)CrossRefGoogle Scholar
  8. 8.
    Miller, H.J., Goodchild, M.F.: Data-driven geography. GeoJournal 80(4), 449–461 (2015)CrossRefGoogle Scholar
  9. 9.
    Long, J.A., Nelson, T.A.: A review of quantitative methods for movement data. Int. J. Geogr. Inf. Sci. 27(2), 292–318 (2013)CrossRefGoogle Scholar
  10. 10.
    Demšar, U., Buchin, K., Cagnacci, F., Safi, K., Speckmann, B., Van de Weghe, N., Weiskopf, D., Weibel, R.: Analysis and visualisation of movement: an interdisciplinary review. Mov. Ecol. 3(1), 1–24 (2015)CrossRefGoogle Scholar
  11. 11.
    Laube, P.: Computational Movement Analysis, S. 1–87. Springer, Cham (2014)Google Scholar
  12. 12.
    Gudmundsson, J., van Kreveld, M.J., Speckmann, B.: Efficient detection of patterns in 2d trajectories of moving points. GeoInformatica 11, 195–215 (2007)CrossRefGoogle Scholar
  13. 13.
    Demšar, U., Buchin, K., van Loon, E.E., Shamoun-Baranes, J.: Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time. GeoInformatica 19(1), 85–115 (2015)CrossRefGoogle Scholar
  14. 14.
    Hägerstrand, T.: What about people in regional science. Pap. Reg. Sci. Assoc. 24, 7–21 (1970)CrossRefGoogle Scholar
  15. 15.
    Miller, H.J.: Modelling accessibility using space-time prism concepts within geographical information systems. Int. J. Geogr. Inf. Syst. 5, 287–301 (1991)CrossRefGoogle Scholar
  16. 16.
    Richter, K.F., Schmid, F., Laube, P.: Semantic trajectory compression: representing urban movement in a nutshell. J. Spat. Inf. Sci. 2012(4), 3–30 (2012)Google Scholar
  17. 17.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transp. Res. C: Emerg. Technol. 15(5), 312–328 (2007)CrossRefGoogle Scholar
  18. 18.
    Du Mouza, C. Rigaux, P.: Mobility patterns. GeoInformatica 9, 297–319 (2005)Google Scholar
  19. 19.
    Järv, O., Ahas, R., Witlox, F.: Understanding monthly variability in human activity spaces: a twelve-month study using mobile phone call detail records. Transp. Res. C: Emerg. Technol. 38, 122–135 (2014)CrossRefGoogle Scholar
  20. 20.
    Lorentzos, N.A.: A formal extension of the relational model for the representation and manipulation of generic intervals. Dissertation, Birbeck College, Universität London (1988)Google Scholar
  21. 21.
    Langran, G.: Time in geographic information systems. Dissertation, Universität Washington (1999)Google Scholar
  22. 22.
    Sltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, S. 331–342 (2000)Google Scholar
  23. 23.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing spatio-temporal archives. VLDB J. 15, 143–164 (2006)CrossRefGoogle Scholar
  24. 24.
    Buchin, M., Kruckenberg, H., Kölzsch, A.: Segmenting trajectories by movement states. In: Advances in Spatial Data Handling, S. 15–25. Springer, Berlin/Heidelberg (2013)Google Scholar
  25. 25.
    Buchin, M., Driemel, A., van Kreveld, M., Sacristán, V.: Segmenting trajectories: a framework and algorithms using spatiotemporal criteria. J. Spat. Inf. Sci. 2011(3), 33–63 (2011)Google Scholar
  26. 26.
    Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E., Yu, P.S.: Global distance-based segmentation of trajectories. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, S. 34–43 (2006)Google Scholar
  27. 27.
    Rasetic, S., Sander, J., Elding, J., Nascimento, M.A.: A trajectory splitting model for efficient spatio-temporal indexing. In: Proceedings of the 31st International Conference on Very Large Data Bases, S. 934–945 (2005)Google Scholar
  28. 28.
    Yoon, H., Shahabi, C.: Robust time-referenced segmentation of moving object trajectories. In: Proceedings of the IEEE international Conference on Data Mining, S. 1121–1126 (2008)Google Scholar
  29. 29.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10, 112–122 (1973)CrossRefGoogle Scholar
  30. 30.
    Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15, 211–228 (2006)CrossRefGoogle Scholar
  31. 31.
    Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., Wolle, T.: Compressing spatiotemporal trajectories. Comput. Geom. Theory Appl. 42, 825–841 (2009)CrossRefGoogle Scholar
  32. 32.
    N. Meratnia, de By, R.A.: Spatiotemporal compression techniques for moving point objects. In: Proceedings of the 9th International Conference on Extending Database Technology, S. 765–782 (2004)Google Scholar
  33. 33.
    Toohey, K., Duckham, M.:. Trajectory similarity measures. SIGSPATIAL Spec. 7(1), 43–50 (2015)CrossRefGoogle Scholar
  34. 34.
    Agrawal, R. Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Proceedings of the 4th International Conference on on Foundations of Data Organization and Algorithms, S. 69–84 (1993)Google Scholar
  35. 35.
    Chu, K., Wong, M.: Fast time-series searching with scaling and shifting. In: Proceedings of the 18th ACM Symposium on Principles of Database Systems, S. 237–248 (1999)Google Scholar
  36. 36.
    Rafiei, D., Mendelzon, A.O.: Querying time series data based on similarity. IEEE Trans. Knowl. Data Eng. 12, 675–693 (2000)CrossRefGoogle Scholar
  37. 37.
    Yi, B.-K., Faloutsos, C.: Fast time sequence indexing for arbitrary lp norms. In: Proceedings of the 26th International Conference on Very Large Data Bases, S. 385–394 (2000)Google Scholar
  38. 38.
    Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, S. 491–502. ACM, New York (2005)Google Scholar
  39. 39.
    Dodge, S., Laube, P., Weibel, R.: Movement similarity assessment using symbolic representation of trajectories. Int. J. Geogr. Inf. Sci. 26(9), 1563–1588 (2012)CrossRefGoogle Scholar
  40. 40.
    Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Proceedings of the Knowledge Discovery in Databases Workshop, S. 359–370 (1994)Google Scholar
  41. 41.
    Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7, 358–386 (2005)CrossRefGoogle Scholar
  42. 42.
    Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining, S. 285–289 (2000)Google Scholar
  43. 43.
    Sakurai, Y., Yoshikawa, M., Faloutsos, C.: Ftw: fast similarity search under the time warping distance. In: Proceedings of the 24th ACM Symposium on Principles of Database Systems, S. 326–337 (2005)Google Scholar
  44. 44.
    Yuan, Y.: Image-Based Gesture Recognition with Support Vector Machines. ProQuest (2008)Google Scholar
  45. 45.
    Agrawal, R., Lin, K.-I., Sawhney, H.S., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: Proceedings of the 21th International Conference on Very Large Data Bases, S. 490–501 (1995)Google Scholar
  46. 46.
    Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery, S. 88–100 (1997)Google Scholar
  47. 47.
    Vlachos, M., Gunopoulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, S. 673–682 (2002)Google Scholar
  48. 48.
    Buchin, K., Buchin, M., van Kreveld, M., Luo, J.: Finding long and similar parts of trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, S. 296–305 (2009)Google Scholar
  49. 49.
    Sinha, G., Mark, D.M.: Measuring similarity between geospatial lifelines in studies of environmental health. J. Geogr. Syst. 7, 115–136 (2005)CrossRefGoogle Scholar
  50. 50.
    Trajcevski, G., Ding, H., Scheuermann, P., Tamassia, R., Vaccaro, D.: Dynamics-aware similarity of moving objects trajectories. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, S. 11:1–11:8 (2007)Google Scholar
  51. 51.
    Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27, 267–289 (2006)CrossRefGoogle Scholar
  52. 52.
    van Kreveld, M., Luo, J.: The definition and computation of trajectory and subtrajectory similarity. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, S. 44:1–44:4 (2007)Google Scholar
  53. 53.
    Fréchet, M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Math. Palermo 22, 1–74 (1906)CrossRefGoogle Scholar
  54. 54.
    Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995)CrossRefGoogle Scholar
  55. 55.
    Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for trajectory analysis. Int. J. Geogr. Inf. Sci. 24, 1101–1125 (2010)CrossRefGoogle Scholar
  56. 56.
    Maheshwari, A., Sack, J.-R., Shahbaz, K., Zarrabi-Zadeh, H.: Fréchet distance with speed limits. Comput. Geom. Theory Appl. 44, 110–120 (2011)CrossRefGoogle Scholar
  57. 57.
    Buchin, K., Buchin, M., Van Kreveld, M., Luo, J. (2011). Finding long and similar parts of trajectories. Comput. Geom. 44(9), 465–476CrossRefGoogle Scholar
  58. 58.
    Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl. 21, 253–282 (2011)CrossRefGoogle Scholar
  59. 59.
    Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: Proceedings of the 18th International Conference on Pattern Recognition, S. 1135–1138 (2006)Google Scholar
  60. 60.
    Djordjevic, B., Gudmundsson, J., Pham, A., Wolle, T.: Detecting regular visit patterns. In: Proceedings of the 16th Annual European Symposium on Algorithms, S. 344–355 (2008)Google Scholar
  61. 61.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining, S. 236–245 (2004)Google Scholar
  62. 62.
    Verhein, F., Chawla, S.: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In: Proceedings of the 11th International Conference on Database Systems for Advanced Applications, Lecture Notes in Computer Science Bd. 3882, S. 187–201. Springer, Berlin (2006)Google Scholar
  63. 63.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO – detecting relative motion patterns in geospatial lifelines. In: Fisher, P.F. (Hrsg.) Developments in Spatial Data Handling, Proceedings of the 11th International Symposium on Spatial Data Handling, S. 201–214. Springer, Berlin (2004)Google Scholar
  64. 64.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. Theory Appl. 41, 111–125 (2008)CrossRefGoogle Scholar
  65. 65.
    Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory data. In: Proceedings of the 14th Annual ACM Symposium on Advances in Geographic Information Systems, S. 35–42 (2006)Google Scholar
  66. 66.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (Hrsg.) Proceedings of the 9th International Symposium on Advances Spatial and Temporal Databases. Lecture Notes in Computer Science Bd. 3633, S. 364–381. Springer, Berlin (2005)Google Scholar
  67. 67.
    Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership patterns among trajectories. In: Proceedings of the 22nd ACM Symposium on Applied Computing. ACM (2007)Google Scholar
  68. 68.
    Benkert, M., Djordjevic, B., Gudmundsson, J., Wolle, T.: Finding popular places. Int. J. Comput. Geom. Appl. 20, 19–42 (2010)CrossRefGoogle Scholar
  69. 69.
    Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In: Proceedings of the 24th International Conference on Data Engineering, S. 1457–1459 (2008)Google Scholar
  70. 70.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proc. VLDB Endow. 1, 1068–1080 (2008)CrossRefGoogle Scholar
  71. 71.
    Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G.: An exploratory data analysis (EDA) of the paths of moving animals. J. Stat. Plan. Inference 122, 43–63 (2004)CrossRefGoogle Scholar
  72. 72.
    Dykes, J.A., Mountain, D.M.: Seeking structure in records of spatio-temporal behavior: visualization issues, efforts and application. Comput. Stat. Data Anal. 43, 581–603 (2003)CrossRefGoogle Scholar
  73. 73.
    Andrienko, N.V., Andrienko, G.L.: Interactive maps for visual data exploration. Int. J. Geogr. Inf. Sci. 13, 355–374 (2003)CrossRefGoogle Scholar
  74. 74.
    Andrienko, G. , Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C.: Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 24, 1577–1600 (2010)CrossRefGoogle Scholar
  75. 75.
    Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer Science & Business Media, Heidelberg (2013)CrossRefGoogle Scholar
  76. 76.
    Andrienko, N., Andrienko, G.: Designing visual analytics methods for massive collections of movement data. Cartographica 42, 117–138 (2007)CrossRefGoogle Scholar
  77. 77.
    Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Comput. Graph. Appl. 26, 10–13 (2006)CrossRefGoogle Scholar
  78. 78.
    Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko, G.: Visually driven analysis of movement data by progressive clustering. Inf. Vis. 7, 225–239 (2008)CrossRefGoogle Scholar
  79. 79.
    Kintisch, E.: Inching toward movement ecology. Science 313, 779–782 (2006)CrossRefGoogle Scholar
  80. 80.
    Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E.: A movement ecology paradigm for unifying organismal movement research. Proc. Nat. Acad. Sci. 105, 19052–19059 (2008)CrossRefGoogle Scholar
  81. 81.
    Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M., Getz, W.M.: Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J. Exp. Biol. 215(6), 986–996 (2012)CrossRefGoogle Scholar
  82. 82.
    Dodge, S., Bohrer, G., Weinzierl, R., Davidson, S.C., Kays, R., Douglas, D., … Wikelski, M.: The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Mov. Ecol. 1(1), 3 (2013)Google Scholar
  83. 83.
    Horne, J.S., Garton, E.O., Krone, S.M., Lewis, J.S.: Analyzing animal movements using Brownian bridges. Ecology 88(9), 2354–2363 (2007)CrossRefGoogle Scholar
  84. 84.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Elsevier Morgan Kaufmann, San Francisco, CA (2005)Google Scholar
  85. 85.
    Geers, G., Sester, M., Winter, S., Wolfson, O.E.: 10121 report – towards a computational transportation science. In: Geers, G., Sester, M., Winter, S., Wolfson, O.E. (Hrsg.) Computational Transportation Science. Leibniz-Zentrum für Informatik, Dagstuhl (2010)Google Scholar
  86. 86.
    Popoola, O.P., Wang, K. (2012). Video-based abnormal human behavior recognition—a review. IEEE Trans Syst. Man Cybern. C: Appl. Rev. 42(6), 865–878Google Scholar
  87. 87.
    Candamo, J., Shreve, M., Goldgof, D.B., Sapper, D.B., Kasturi, R.: Understanding transit scenes: a survey on human behavior-recognition algorithms. IEEE Trans. Intell. Transp. Syst., 11(1), 206–224 (2010)CrossRefGoogle Scholar
  88. 88.
    Blanke, U., Troster, G., Franke, T., Lukowicz, P.: Capturing crowd dynamics at large scale events using participatory gps-localization. In: 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), S. 1–7. IEEE, Piscataway (2014)Google Scholar
  89. 89.
    Larson, J.S., Bradlow, E.T., Fader, P.S.: An exploratory look at supermarket shopping paths. Int. J. Res. Mark. 22, 395–414 (2005)CrossRefGoogle Scholar
  90. 90.
    Gudmundsson, J., Wolle, T.: Towards automated football analysis: algorithms and data structures. In: Proceedings of the 10th Australasian Conference on Mathematics and Computers in Sport (2010)Google Scholar
  91. 91.
    Kang, C.-H., Hwang, J.-R., Li, K.-J.: Trajectory analysis for soccer players. In: Proceedings of the 6th IEEE International Conference on Data Mining Workshop, S. 377–381 (2006)Google Scholar
  92. 92.
    Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014)CrossRefGoogle Scholar
  93. 93.
    Fujimura, A., Sugihara, K.: Geometric analysis and quantitative evaluation of sport teamwork. Syst. Comput. Jpn. 36, 49–58 (2005)CrossRefGoogle Scholar
  94. 94.
    Horton, M., Gudmundsson, J., Chawla, S., Estephan, J.: Automated classification of passing in football. In: Advances in Knowledge Discovery and Data Mining, S. 319–330. Springer International Publishing, Berlin/Heidelberg (2015)Google Scholar
  95. 95.
    Memmert, D., Perl, J.: Game creativity analysis by means of neural networks. J. Sport Sci. 27, 139–149 (2009)CrossRefGoogle Scholar
  96. 96.
    Grunz, A., Memmert, D., Perl, J.: Analysis and simulation of actions in games by means of special self-organizing maps. Int. J. Comput. Sci. Sport 8, 22–36 (2009)Google Scholar
  97. 97.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. Int. J. Geogr. Inf. Sci. 19, 639–668 (2005)CrossRefGoogle Scholar
  98. 98.
    Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M.J., Goldin, D., Howard, A., Labrinidis, A., Madden, S., Voisard, A. Worboys, M.: Report from the first workshop on geo sensor networks. ACM SIGMOD Rec. 33, 141–144 (2004)CrossRefGoogle Scholar
  99. 99.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1996)Google Scholar
  100. 100.
    Duckham, M.: Decentralized Spatial Computing: Foundations of Geosensor Networks. Springer Science & Business Media, Berlin/New York (2012)Google Scholar
  101. 101.
    Yu, X.: Approaches and principles of fall detection for elderly and patient. In: 2008 10th International Conference on e-Health Networking, Applications and Services (HealthCom 2008), S. 42–47. IEEE, Piscataway (2008)Google Scholar
  102. 102.
    Both, A., Duckham, M., Laube, P., Wark, T., Yeoman, J.: Decentralized monitoring of moving objects in a transportation network augmented with checkpoints. Comput. J. 56(12), 1432–1449 (2013)CrossRefGoogle Scholar
  103. 103.
    Laube, P., Duckham, M., Wolle, T.: Decentralized movement pattern detection amongst mobile geosensor nodes. In: Cova, T.J., Beard, K., Goodchild, M.F., Frank, A.U. (Hrsg.) GIScience 2008. LNCS, Bd. 5266, S. 199–216. Springer, Heidelberg (2008)Google Scholar
  104. 104.
    Dobson, J.E., Fisher, P.F.: Geoslavery. IEEE Technol. Soc. Mag. 22, 47–52 (2003)CrossRefGoogle Scholar
  105. 105.
    Bettini, C., Wang, X., Jajodia, S.: Protecting privacy against location-based personal identification. In: Jonker, W., Petkovic, M. (Hrsg.) Secure Data Management. Lecture Notes in Computer Science, Bd. 3674, S. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  106. 106.
    Duckham, M., Kulik, L.: Location privacy and location-aware computing. In: Drummond, J., Billen, R., Forrest, D., Joao, E. (Hrsg.) Dynamic and Mobile GIS. CRC Press, Boca Raton (2006)Google Scholar
  107. 107.
    U.S. Department of Justice, Office of Information and Privacy: overview of the privacy act of 1974 (2004)Google Scholar
  108. 108.
    Kaasinen, E.: User needs for location-aware mobile services. Pers. Ubiquitous Comput. 7, 70–79 (2003)CrossRefGoogle Scholar
  109. 109.
    Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: International Conference on Pervasive Services (ICPS ’05), S. 88–97 (2005)Google Scholar
  110. 110.
    Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location privacy. In: Spatial Information Theory (COSIT 2005). Lecture Notes in Computer Science, Bd. 3693, S. 31–48. Springer, Heidelberg (2005)Google Scholar
  111. 111.
    Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.W., Want, R., Schmidt, A. (Hrsg.) Pervasive Computing, Proceedings. Lecture Notes in Computer Science, Bd. 3468, S. 152–170. Springer, Berlin (2005)Google Scholar
  112. 112.
    Giannotti, F. Pedreschi, D.: Mobility, data mining and privacy: a vision of convergence. In: Giannotti, F., Pedreschi, D. (Hrsg.) Mobility, Data Mining and Privacy, S. 1–11. Springer, Berlin (2008)CrossRefGoogle Scholar
  113. 113.
    de Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1–5 (2013)CrossRefGoogle Scholar
  114. 114.
    Uteck, A.: Ubiquitous computing and spatial privacy, anonymity, privacy and identity in a networked society. In: Kerr, I., Steeves, V., Lucock, C. (Hrsg.) Lessons from the Identity Trail, S. 83–102. Oxford University Press, Oxford (2009)Google Scholar
  115. 115.
    Nouwt, S.: Reasonable expectations of geo-privacy? SCRIPTed 5, 375–403 (2008)CrossRefGoogle Scholar
  116. 116.
    Peuquet, D.J.: It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Ann. Assoc. Am. Geogr. 83, 441–461 (1994)CrossRefGoogle Scholar
  117. 117.
    Chrisman, N.R.: Beyond the snapshot: changing the approach to change, error, and process. In: Egenhofer, M.J., Golledge, R.G. (Hrsg.) Spatial and Temporal Reasoning in Geographic Information Systems, S. 85–93. Oxford University Press, Oxford (1998)Google Scholar
  118. 118.
    Laube, P.: The low hanging fruit is gone: achievements and challenges of computational movement analysis. SIGSPATIAL Spec. 7(1), 3–10 (2015)CrossRefGoogle Scholar
  119. 119.
    Dodge, S., Weibel, R., Lautenschutz, A.-K.: Towards a taxonomy of movement patterns. Inf. Vis. 7, 240–252 (2008)CrossRefGoogle Scholar
  120. 120.
    Wood, Z., Galton, A.: Classifying collective motion. In: Gottfried, B., Aghajan, H. (Hrsg.) Behaviour Monitoring and Interpretation – BMI – Smart Environments. Ambient Intelligence and Smart Environments, Bd. 3, S. 129–155. IOS Press, Amsterdam (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Patrick Laube
    • 1
    Email author
  • Joachim Gudmundsson
    • 2
  • Thomas Wolle
    • 2
  1. 1.Zürcher Hochschule für Angewandte Wissenschaften, ZHAWWädenswilSchweiz
  2. 2.NICTASydneyAustralia

Personalised recommendations