Advertisement

Geoinformatik pp 123-156 | Cite as

3D-Gebäudemodellierung und -generalisierung

  • Martin KadaEmail author
Chapter
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Gebäudeobjekte nehmen in 3D-Stadtmodellen eine zentrale Rolle ein. Da Anwendungen diese in unterschiedlichen Detaillierungsgraden benötigen, sind Methoden zur Generalisierung erforderlich, um die zunächst detailreichen 3D-Gebäudemodelle auf die geforderten Detailstufen zu bringen. Nach einem kurzen Überblick über verschiedene Möglichkeiten zur geometrischen und semantischen 3D-Gebäudemodellierung werden beispielhaft einige Verfahren vorgestellt, welche kartographische Generalisierungsvorgänge für 3D-Gebäudemodelle umsetzen.

Schlüsselwörter

3D-Stadtmodelle Gebäude Modellierung Generalisierung Simplifizierung Aggregation Kartographie Algorithmen 

Literatur

  1. 1.
    Ai, T., Li, Z., Liu, Y.: Progressive transmission of vector data based on changes accumulation model. In: Fischer, P. (Hrsg.) Developments in Spatial Data Handling, S. 85–96. Springer, Berlin/Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Anders, K.-H.: Level of detail generation of 3D building groups by aggregation and typification. In: Proceedings of the XXII International Cartographic Conference, La Coruna (2005)Google Scholar
  3. 3.
    Arroyo Ohori, K., Biljecki, F., Diakité, A., Krijnen, T., Ledoux, H., Stoter, J.: Towards an integration of GIS and BIM data: What are the geometric and topological issues? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. IV-4/W5, 1–8 (2017)Google Scholar
  4. 4.
    Baig, S.U., Rahman, A.A.: A unified approach for 3D generalization of building models in CityGML. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-4/W1, 93–99 (2013)Google Scholar
  5. 5.
    Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A.: Applications of 3D city models: State of the art review. ISPRS Int. J. Geo-Inf. 4(4), 2842–2889 (2015)CrossRefGoogle Scholar
  6. 6.
    Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K.H., Khoo, V.H.S.: The most common geometric and semantic errors in CityGML datasets. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W1, 13–22 (2016)Google Scholar
  7. 7.
    Biljecki, F., Ledoux, H., Stoter, J.: An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 59, 25–37 (2016)CrossRefGoogle Scholar
  8. 8.
    Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  9. 9.
    Brenner, C.: Interactive modelling tools for 3D building reconstruction. In: Fritsch, D., Spiller, R. (Hrsg.) Photogrammetric Week ’99, S. 23–34. Wichmann Verlag, Heidelberg (1999)Google Scholar
  10. 10.
    Brenner, C.: Modelling 3D objects using weak CSG primitives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXV-B3, 1085–1090 (2004)Google Scholar
  11. 11.
    Brenner, C.: Building extraction. In: Vosselman, G., Maas, H.-G. (Hrsg.) Airborne and Terrestrial Laser Scanning, S. 169–212. Whittles Publishing, Dunbeath (2010)Google Scholar
  12. 12.
    Coors, V.: Feature-preserving simplification in web-based 3D-GIS. In: Proceedings of the 1st International Symposium on Smart Graphics, Hawthorne, S. 22–28 (2001)Google Scholar
  13. 13.
    Coors, V., Andrae, C., Böhm, K.-H.: 3D-Stadtmodelle: Konzepte und Anwendungen mit CityGML. Wichmann Verlag, Berlin, Offenbach (2016)Google Scholar
  14. 14.
    Eastman, C.M., Weiler, K.J.: Geometric modeling using euler operators. Computer Science Department. Paper 1587. http://repository.cmu.edu/compsci/1587 (1979). Zugegriffen am 25.09.2017
  15. 15.
    Fan, H., Meng, L.: Automatic derivation of different levels of detail for 3D buildings modeled by CityGML. In: Proceedings of the 24th International Cartography Conference, Santiago, S. 15–21 (2009)Google Scholar
  16. 16.
    Fan, H., Meng, L.: A three-step approach of simplifying 3D buildings modelled by CityGML. Int. J. Geogr. Inf. Sci. 26(6), 1091–1107 (2012)CrossRefGoogle Scholar
  17. 17.
    Filippovska, Y., Walter, V., Fritsch, D.: Quality evaluation of generalization algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII Part B2, 799–804 (2008)Google Scholar
  18. 18.
    Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphics: Principles and Practice, 2. Aufl. Addison-Wesley, Reading (1990)Google Scholar
  19. 19.
    Forberg, A.: Generalization of 3D building data based on a scale-space approach. ISPRS J. Photogramm. Remote Sens. 62(2), 104–111 (2007)CrossRefGoogle Scholar
  20. 20.
    Förstner, W.: 3D-city models: Automatic and semiautomatic acquisition methods. In: Fritsch, D., Spiller, R. (Hrsg.) Photogrammetric Week ’99, S. 291–303. Wichmann Verlag, Heidelberg (1999)Google Scholar
  21. 21.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97), S. 209–216 (1997)Google Scholar
  22. 22.
    Glander, T., Döllner, J.: Abstract representations for interactive visualization of virtual 3D city models. Comput. Environ. Urban Syst. 33(5), 375–387 (2009)CrossRefGoogle Scholar
  23. 23.
    Gröger, G., Plümer, L.: CityGML – interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 71, 12–33 (2012)CrossRefGoogle Scholar
  24. 24.
    Guercke, R., Zhao, J., Brenner, C., Zhu, Q.: Generalization of tiled models with curved surfaces using typification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII Part 2, 39–44 (2010)Google Scholar
  25. 25.
    Guercke, R., Götzelmann, T., Brenner, C., Sester, M.: Aggregation of LoD1 building models as an optimization problem. ISPRS J. Photogramm. Remote Sens. 66(2), 209–222 (2011)CrossRefGoogle Scholar
  26. 26.
    Haala, N., Cavegn, S.: High density aerial image matching: State-of-the-art and future prospects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B4, 625–630 (2016)Google Scholar
  27. 27.
    Haala, N., Kada, M.: An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 65(6), 570–580 (2010)CrossRefGoogle Scholar
  28. 28.
    He, S., Moreau, G., Martin, J.-Y.: Footprint-based generalization of 3D building groups at medium level of detail for multi-scale urban visualization. Int. J. Adv. Softw. 5(3&4), 378–388 (2012)Google Scholar
  29. 29.
    Henn, A., Gröger, G., Stroh, V., Plümer, L.: Model driven reconstruction of roofs from sparse LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 76, 17–29 (2013)CrossRefGoogle Scholar
  30. 30.
    Hoffmann, C.: Solid and Geometric Modeling. Morgan Kaufmann Publishers, San Mateo (1989)Google Scholar
  31. 31.
    Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), Los Angeles S. 99–108 (1996)Google Scholar
  32. 32.
    Kada, M.: Automatic generalisation of 3D building models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIV Part 4, 243–248 (2002)Google Scholar
  33. 33.
    Kada, M.: 3D building generalization based on half-space modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVI-2/W40, 58–64 (2006)Google Scholar
  34. 34.
    Kada, M.: A contribution to 3D generalisation. In: Fritsch, D. (Hrsg.) Photogrammetric Week ’07, S. 41–51. Wichmann Verlag, Heidelberg (2007)Google Scholar
  35. 35.
    Kada, M.: Generalization of 3D building models for map-like presentations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII Part B2, 399–404 (2008)Google Scholar
  36. 36.
    Kada, M.: Progressive transmission of 3D building models based on string grammars and planar half-spaces. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II2, 263–268 (2014)Google Scholar
  37. 37.
    Kada, M., McKinley, L.: 3D building reconstruction from LiDAR based on a cell decomposition approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-3/W4, 29–43 (2009)Google Scholar
  38. 38.
    Kada, M., Wichmann, A., Filippovska, Y., Hermes, T.: Animation strategies for smooth transformations between discrete LODs of 3D building models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B4, 413–420 (2016)Google Scholar
  39. 39.
    Kada, M., Wichmann, A., Manzke, N., Filippovska, Y.: A data model for the interactive construction and correction of 3D building geometry based on planar half-spaces. In: Abdul-Rahman, A. (Hrsg.) Advances in 3D Geoinformation, S. 461–476. Springer, Cham (2017)CrossRefGoogle Scholar
  40. 40.
    Kobbelt, L., Campagna, S., Seidel, H.-P.: A general framework for mesh decimation. In: Proceedings of Graphics Interface ’98, Vancouver, S. 43–50 (1998)Google Scholar
  41. 41.
    Kolbe, T.H.: CityGML goes to Broadway. In: Fritsch, D. (Hrsg.) Photogrammetric Week ’15, S. 343–356. Wichmann Verlag, Heidelberg (2015)Google Scholar
  42. 42.
    Kolbe, Z.H., Plümer, L., Cremers, A.B.: Identifying buildings in aerial images using constraint relaxation and variable elimination. IEEE Intell. Syst. 15(1), 33–39 (2000)CrossRefGoogle Scholar
  43. 43.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)CrossRefGoogle Scholar
  44. 44.
    Li, H., Wang, Y, Guo, Q., Han, J.: Progressive simplification and transmission of building polygons based on triangle meshes. In: Proceedings of SPIE 7840, Sixth International Symposium on Digital Earth: Models, Algorithms, and Virtual Reality (2009)Google Scholar
  45. 45.
    Li, Q., Sun, X., Yang, B., Jiang, S.: Geometric structure simplification of 3D building models. ISPRS J. Photogramm. Remote Sens. 84, 100–113 (2013)CrossRefGoogle Scholar
  46. 46.
    Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., Nagel, C.: An improved LOD specification for 3D building models. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W1, 3–12 (2016)Google Scholar
  47. 47.
    Luebke, D.: Level of Detail for 3D Graphics. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  48. 48.
    Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press, Rockville (1988)Google Scholar
  49. 49.
    Mao, B., Ban, Y., Harrie, L.: A framework for generalization of 3D city models based on CityGML and X3d. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII-2/W11 (2009)Google Scholar
  50. 50.
    Peter, M.S., Haala, N., Fritsch, D.: Preserving ground plan and facade lines for 3D building generalization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII Part B2, 481–486 (2008)Google Scholar
  51. 51.
    Piepereit, R., Schilling, A., Alam, N., Wewetzer, M., Pries, M., Coors, V.: Towards automatic processing of virtual city models for simulations. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W1, 39–45 (2016)Google Scholar
  52. 52.
    Rau, J.-Y., Chen, L.-C.: Robust reconstruction of building models from three-dimensional line segments. Photogramm. Eng. Remote Sens. 69(2), 181–188 (2003)CrossRefGoogle Scholar
  53. 53.
    Rau, J.Y., Chen, L.C., Tsai, F., Hsiao, K.H., Hsu, W.C.: Automatic generation of pseudo continuous LoDs for 3D polyhedral building model. In: Abdul-Rahman, A., Zlatanova, S., Coors, V. (Hrsg.) Innovations in 3D Geo Information Systems. Lecture Notes in Geoinformation and Cartography, S. 333–343. Springer, Berlin/Heidelberg (2006)CrossRefGoogle Scholar
  54. 54.
    Requicha, A.A.G.: Mathematical models of rigid solids, Technical Memo 28, Production Automation Project, University of Rochester, Rochester (1977)Google Scholar
  55. 55.
    Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 93, 256–271 (2014)CrossRefGoogle Scholar
  56. 56.
    Royan, J., Balter, R., Bouville, C.: Hierarchical representation of virtual cities for progressive transmission over networks. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, S. 432–439 (2006)Google Scholar
  57. 57.
    Sester, M., Brenner, C.: A vocabulary for a multiscale process description for fast transmission and continuous visualization of spatial data. Comput. Geosci. 35(11), 2177–2184 (2009)CrossRefGoogle Scholar
  58. 58.
    Sester, M., Klein, A.: Rule based generalization of buildings for 3D-visualization. In: Proceedings of the 19th International Cartographic Conference of the ICA, Ottawa, S. 214–224 (1999)Google Scholar
  59. 59.
    Shen, J., Fan, H., Mao, B., Wang, M.: Typification for façade structures based on user perception. ISPRS Int. J. Geo-Inf. 5(12), 239 (2016)CrossRefGoogle Scholar
  60. 60.
    Sohn, G., Huang, X., Tao, V.: Using a binary space partitioning tree for reconstructing polyhedral building models from airborne LiDAR data. Photogramm. Eng. Remote Sens. 74(11), 1425–1438 (2008)CrossRefGoogle Scholar
  61. 61.
    Staufenbiel, W.: Zur Automation der Generalisierung topographischer Karten mit besonderer Berücksichtigung großmaßstäbiger Gebäudedarstellungen. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover (1973)Google Scholar
  62. 62.
    Thiemann, F.: 3D-Gebäude-Generalisierung. In: Visualisierung und Erschließung von Geodaten – Seminar GeoVIS 2003, Kartographische Schriften, Bd. 7, S. 185–192. Kirschbaum Verlag, Bonn (2003)Google Scholar
  63. 63.
    Thiemann, F., Sester, M.: 3D-symbolization using adaptive templates. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVI Part 2, 109–114 (2006)Google Scholar
  64. 64.
    Vallet, B., Pierrot-Deseilligny, M., Boldo, D.: Building footprint database improvement for 3D reconstruction: A direction aware split and merge approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII Part 3/W4, 139–144 (2009)Google Scholar
  65. 65.
    Xie, J., Zhan, L., Li, J., Wang, H., Yang, L.: Automatic simplification and visualization of 3D urban building models. Int. J. Appl. Earth Obs. Geoinf. 18, 222–231 (2012)CrossRefGoogle Scholar
  66. 66.
    Zach, C.: Integration of geomorphing into level of detail management for real-time rendering. In: Proceedings of the 18th Spring Conference on Computer Graphics, SCCG ’02, S. 115–122. ACM, New York (2002)Google Scholar
  67. 67.
    Zhao, J., Zhu, Q., Du, Z., Feng, T., Zhang, Y.: Mathematical morphology-based generalization of complex 3D building models incorporating semantic relationships. ISPRS J. Photogramm. Remote Sens. 68, 95–11 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Geodäsie und GeoinformationstechnikTechnische Universität BerlinBerlinDeutschland

Personalised recommendations