Geoinformatik pp 91-122 | Cite as
Geodateninfrastrukturen
Chapter
First Online:
Zusammenfassung
Geodateninfrastrukturen (GDI) zielen auf den einfachen Austausch von Geodaten und -diensten. GDI sollen die effiziente Umsetzung von Geoinformationsanwendungen mit Zugriff auf aktuelle, verteilte heterogene Geodatenquellen erlauben. Zahlreiche gesetzliche, kommerzielle, nutzergetriebene und wissenschaftliche Initiativen forcieren den Auf- und Ausbau von GDI. Der Beitrag diskutiert Arten und aktuelle Entwicklungsstände von GDI und zeigt Ansätze für die nächsten GDI-Generationen.
Schlüsselwörter
Geodateninfrastrukturen (Geoinformationsinfrastrukturen GDI) Geoprozessierung Interoperabilität Kartendienste Nutzergenerierte Geoinformationen (VGI) INSPIRE Geodatenfusion Geoinformation Geodaten Geodienste Geodatenmodelle (Schemata)Literatur
- 1.Bernard, L., Fitzke, J., Wagner, R. (Hrsg.): Geodateninfrastrukturen – Grundlagen und Anwendungen. Wichmann, Heidelberg (2005)Google Scholar
- 2.Streuff, H., Kutterer, H.-J., Lenk, M., Rummel, R.: Geoinformation im internationalen Umfeld. In: Kummer, K., Kötter, T., Eichhorn, A. (Hrsg.) Das deutsche Vermessungs- und Geoinformationswesen, Bd. 2015. S. 193–251. Wichmann, Berlin (2014)Google Scholar
- 3.Gore, A.: The Digital Earth: Understanding Our Planet in the 21st Century (Speech held on January 31, 1998 in the California Science Center). Photogramm. Eng. Remote Sens. 65(5), 528–530 (1999)Google Scholar
- 4.Funde, P., Sun, J.: Web GIS: Principles and applications. ESRI Press, Redlands (2011)Google Scholar
- 5.Peterson, M.: Evaluating mapping APIs. In: Brus, J., Vondrakova, A., Vozenilek, V. (Hrsg.) Modern Trends in Cartography. Lecture Notes in Geoinformation and Cartography, S. 183–197. Springer International Publishing, Cham (2015)Google Scholar
- 6.Google: Examples Google Maps API. https://developers.google.com/maps/documentation/javascript/examples/layer-kml. Zugegriffen am 30.04.2015 (2015)
- 7.Goodchild, M.F., Li, L.N.: Assuring the quality of volunteered geographic information. Spat Stat-Neth 1(0), 110–120 (2012). https://doi.org/10.1016/j.spasta.2012.03.002 CrossRefGoogle Scholar
- 8.Meier, P.: Digital humanitarians: How big data is changing the face of humanitarian response. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
- 9.Goodchild, M.F., Glennon, J.A.: Crowdsourcing geographic information for disaster response: a research frontier. Int. J. Digit. Earth 3(3), 231–241 (2010). https://doi.org/10.1080/17538941003759255 CrossRefGoogle Scholar
- 10.OSM: OpenStreetMap Wiki. http://wiki.openstreetmap.org. Zugegriffen am 30.04.2015 (2015)
- 11.Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic openStreetMap quality analysis. Trans. GIS 18(6), 877–895 (2014). https://doi.org/10.1111/tgis.12073 CrossRefGoogle Scholar
- 12.Wiemann, S., Bernard, L.: Linking crowdsourced observations with INSPIRE. In: Joaquin, H., Schade, S., Granell, C. (Hrsg.) Conference of the Association of Geographic Information Laboratories for Europe (AGILE), Castellón (2014)Google Scholar
- 13.Craglia, M., Shanley, L.: Data democracy – Increased supply of geospatial information and expanded participatory processes in the production of data. Int. J. Digit. Earth 1–15 (2015). https://doi.org/10.1080/17538947.2015.1008214
- 14.EC: Directive 2007/2/EC of the European parliament and of the council of 14 March 2007 establishing an infrastructure for spatial information in the European community (INSPIRE). In: Council, E.P.a.E. (Hrsg.) S. L 108/101 – L 108/114. Official Journal of the European Union (2007)Google Scholar
- 15.INSPIRE: INSPIRE spatial data services and services allowing spatial data services to be invoked. Draft Implementing Rules, Network Services Drafting Team, Version 3.0. http://inspire.ec.europa.eu/documents/Spatial_Data_Services/Draft_TG_for_INSPIRE_SDS_2.0.1.pdf. (2013)
- 16.WR: Empfehlungen zur Weiterentwicklung der wissenschaftlichen Informationsinfrastrukturen in Deutschland bis 2020. Wissenschaftsrat, Berlin (2012)Google Scholar
- 17.Bernard, L., Mäs, S., Müller, M., Henzen, C., Brauner, J.: Scientific geodata infrastructures: challenges, approaches and directions. Int. J. Digit. Earth 7(7), 613–633 (2014). https://doi.org/10.1080/17538947.2013.781244 CrossRefGoogle Scholar
- 18.Craglia, M., de Bie, K., Jackson, D., Pesaresi, M., Remetey-Fulopp, G., Wang, C.L., Annoni, A., Bian, L., Campbell, F., Ehlers, M., van Genderen, J., Goodchild, M., Guo, H.D., Lewis, A., Simpson, R., Skidmore, A., Woodgate, P.: Digital Earth 2020: towards the vision for the next decade. Int. J. Digit. Earth 5(1), 4–21 (2012). https://doi.org/10.1080/17538947.2011.638500 CrossRefGoogle Scholar
- 19.Eppink, F., Werntze, A., Mäs, S., Popp, A., Seppelt, R.: Land management and ecosystem services: how collaborative research programmes can support better policies. GAIA – Ecol. Perspect. Sci. Soc. 21(1), 55–63 (2012)Google Scholar
- 20.Mäs, S., Henzen, C., Müller, M., Bernard, L.: GLUES GDI – Eine Geodateninfrastruktur für wissenschaftliche Umweltdaten. gis. SCIENCE 2014(4), 129–137 (2014)Google Scholar
- 21.Bernard, L., Hergert, A., Katerbaum, G., Schwarzbach, F., Taggeselle, J.: INSPIRE Umsetzung in der GDI Sachsen. In: Beiträge zum 16. Münchener Fortbildungsseminar 2011. Edition GIS. Events, S. 114–121 (2011)Google Scholar
- 22.Bernard, L., Brauner, J., Taggeselle, J.: Vorstudie zum Betriebskonzept der Geodateninfrastruktur des Freistaates Sachsen (GDI Sachsen) (2008)Google Scholar
- 23.Boehm, B.W.: A spiral model of software development and enhancement. Computer 21(5), 61–72 (1988). https://doi.org/10.1109/2.59 CrossRefGoogle Scholar
- 24.Usländer, T.: Service-oriented design of environmental information systems, Bd. 5. Karlsruher Schriften zur Anthropomatik. KIT Scientific Publishing, Karlsruhe (2010)Google Scholar
- 25.Trapp, N., Schneider, U.A., McCallum, I., Fritz, S., Schill, C., Borzacchiello, M.T., Heumesser, C., Craglia, M.: A meta-analysis on the return on investment of geospatial data and systems: A multi-country perspective. Trans. GIS 19(2), 169–187 (2015). https://doi.org/10.1111/tgis.12091 CrossRefGoogle Scholar
- 26.Melzer, I.: Service-orientierte Architekturen mit Web Services. Spektrum Akademischer Verlag, Heidelberg (2010)CrossRefGoogle Scholar
- 27.Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. In: ICSE’00, S. 407–416. ACM, New York (2000)Google Scholar
- 28.Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 184, 34–43 (2001)CrossRefGoogle Scholar
- 29.Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell. Syst. 21, 96–101 (2006). https://doi.org/10.1109/MIS.2006.62 CrossRefGoogle Scholar
- 30.W3C: RDF 1.1 Primer, W3C Working Group Note 24 June 2014. https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624. Zugegriffen am 25.02.2016
- 31.W3C: SPARQL 1.1 Query Language. In: Harris, S., Seaborne, A. (Hrsg.) W3C (2013)Google Scholar
- 32.Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. „Big“ web services: making the right architectural decision. In: WWW’08, S. 805–814. ACM, New York (2008)Google Scholar
- 33.Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: adding a spatial dimension to the web of data. In: Bernstein, A., Karger, D., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (Hrsg.) The Semantic Web – ISWC 2009, Bd. 5823. Lecture Notes in Computer Science, S. 731–746. Springer, Berlin/Heidelberg (2009)Google Scholar
- 34.Goodwin, J., Dolbear, C., Hart, G.: Geographical linked data: the administrative geography of Great Britain on the semantic web. Trans. GIS 12, 19–30 (2008). https://doi.org/10.1111/j.1467-9671.2008.01133.x CrossRefGoogle Scholar
- 35.ISO: ISO 19108 International Standard on Geographic information – Temporal Schema. International Organization for Standardization (2002)Google Scholar
- 36.ISO: ISO 19107 International Standard on Geographic information – Spatial Schema. International Organization for Standardization (2003)Google Scholar
- 37.Brinkhoff, T.: Geodatenbanksysteme in Theorie und Praxis: Einführung in objektrelationale Geodatenbanken unter besonderer Berücksichtigung von Oracle Spatial. Wichmann VDE Verlag, Heidelberg (2013)Google Scholar
- 38.ISO: ISO 19109 International Standard on Geographic information – Rules for Application Schema. International Organization for Standardization (2005)Google Scholar
- 39.Reinwarth, S., Bernard, L.: Das Rule Interchange Format (RIF) für interoperable Schemamapping-Anwendungen. In: INSPIRE. gis.SCIENCE 2012(3), 109–117 (2012)Google Scholar
- 40.Lehto, L.: Schema Translations in a Web Service Based SDI. In: Wachowicz, M., Bodum, L. (Hrsg.) Conference of the Association of Geographic Information Laboratories for Europe (AGILE), Aalborg (2007)Google Scholar
- 41.Mohammadi, H., Rajabifard, A., Williamson, I.P.: Development of an interoperable tool to facilitate spatial data integration in the context of SDI. Int. J. Geogr. Inf. Sci. 24(4), 487–505 (2010). https://doi.org/10.1080/13658810902881903 CrossRefGoogle Scholar
- 42.OGC: OGC GeoSPARQL – A Geographic Query Language for RDF Data, 11-052r4. Open Geospatial Consortium, Inc. (2012)Google Scholar
- 43.Wiemann, S., Bernard, L.: Conflation Services within Spatial Data Infrastructures. In: Painho, M., Santos, M.Y., Pundt, H. (Hrsg.) 13th AGILE International Conference on Geographic Information Science, Guimarães, S. 1–8 (2010)Google Scholar
- 44.Wade, T., Sommer, S.: A to Z GIS: an illustrated dictionary of geographic information systems. ESRI Press, Redlands, California (2006)Google Scholar
- 45.Foerster, T., Schaeffer, B., Baranski, B., Brauner, J.: Geospatial web services for distributed processing: applications and scenarios. In: Zhao, P., Di, L. (Hrsg.) Geospatial Web Services: Advances in Information Interoperability, S. 245–286. IGI Global, Hershey (2011)CrossRefGoogle Scholar
- 46.Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P., Stasch, C.: Semantic enablement for spatial data infrastructures. Trans. GIS 14, 111–129 (2010). https://doi.org/10.1111/j.1467-9671.2010.01186.x CrossRefGoogle Scholar
- 47.Neteler, M., Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3. Aufl. Springer, New York (2007)Google Scholar
- 48.OGC: OGC Web Feature Service 2.0 Interface Standard – With Corrigendum. Open Geospatial Consortium (2014)Google Scholar
- 49.OGC: OpenGIS Web Coverage Processing Service (WCPS) Language Interface Standard 1.0.0. Open Geospatial Consortium (2009)Google Scholar
- 50.OGC: OGC WCS 2.0 Interface Standard – Core. Open Geospatial Consortium (2010)Google Scholar
- 51.OGC: OpenGIS Web Processing Service Vs. 1.0.0. Open Geospatial Consortium (2007)Google Scholar
- 52.OGC: OGC WPS 2.0 Interface Standard. Open Geospatial Consortium (2014)Google Scholar
- 53.Friis-Christensen, A., Ostländer, N., Lutz, M., Bernard, L.: Designing service architectures for distributed geoprocessing: challenges and future directions. Trans. GIS 11(6), 799–818 (2007). https://doi.org/10.1111/j.1467-9671.2007.01075.x CrossRefGoogle Scholar
- 54.Brauner, J.: Anbindung von GIS-Funktionalitäten an eine Geodateninfrastruktur über eine Web Processing Service Schnittstelle. GIS Zeitschrift für Geoinformatik(3), 18–25 (2008)Google Scholar
- 55.Müller, M., Bernard, L., Kadner, D.: Moving code – Sharing geoprocessing logic on the Web. ISPRS J. Photogramm. Remote Sens. 83, 193–203 (2013). https://doi.org/10.1016/j.isprsjprs.2013.02.011 CrossRefGoogle Scholar
- 56.Kadner, D., Müller, M., Brauner, J., Bernard, L.: Konzeption eines Marktplatzes für den Austausch von Geoprozessierungsimplementierungen. gis. SCIENCE 2012(3), 118–124 (2012)Google Scholar
- 57.Brauner, J.: Formalizations for geooperators – Geoprocessing in spatial data infrastructures. Ph.D. thesis, Technische Universität Dresden (2015)Google Scholar
- 58.W3C: SKOS simple knowledge organization system primer. In: Isaac, A., Summers, E. (Hrsg.) W3C (2009)Google Scholar
- 59.W3C: SKOS simple knowledge organization system reference. In: Miles, A., Bechhofer, S. (Hrsg.) W3C (2009)Google Scholar
- 60.W3C: Best practice recipes for publishing RDF vocabularies. In: Berrueta, D., Phipps, J. (Hrsg.) W3C (2008)Google Scholar
- 61.W3C: Cool URIs for the Semantic Web. In: Sauermann, L., Cyganiak, R. (Hrsg.) W3C (2008)Google Scholar
- 62.Henzen, C., Brauner, J., Müller, M., Henzen, D., Bernard, L.: Geoprocessing appstore. In: Bacao, F., Santos, M.Y., Painho, M. (Hrsg.) The 18th AGILE International Conference on Geographic Information Science, Lisbon (2015)Google Scholar
- 63.Kadner, D., Müller, M., Brauner, J., Bernard, L.: Konzeption eines Marktplatzes für den Austausch von Geoprozessierungsimplementierungen. gis.SCIENCE 2012, 118–124 (2012)Google Scholar
- 64.Bernard, L., Krüger, T.: Integration of GIS and spatio-temporal simulation models. Trans. GIS 4(3), 197–215 (2000). https://doi.org/10.1111/1467-9671.00049 CrossRefGoogle Scholar
- 65.Goodchild, M.F., Parks, B.O., Steyaert, L.T. (Hrsg.): Environmental Modeling with GIS. Oxford University Press, New York (1993)Google Scholar
- 66.Haubrock, S., Theisselmann, F., Rotzoll, H., Dransch, D.: Web-based management of simulation models – concepts, technologies and the users’ needs. In: Anderssen, R.S., Braddock, R.D., Newham, L.T.H. (Hrsg.) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, S. 880–886 (2009)Google Scholar
- 67.Goodchild, M.F., Steyaert, L.T., Parks, B.O. (Hrsg.): GIS and Environmental Modeling: Progress and Research Issues. GIS World Books, Fort Collins (1996)Google Scholar
- 68.Maué, P., Stasch, C., Athanasopoulos, G., Gerharz, L.: Geospatial standards for web-enabled environmental models. Int. J. Spat. Data Infrastruct. Res. 6, 145–167 (2011)Google Scholar
- 69.IEEE: 1516 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) Framework and Rules Institute of Electrical and Electronics Engineers, New York (2010)Google Scholar
- 70.Voinov, A., Shugart, H.H.: ,Integronsters‘, integral and integrated modeling. Environ. Model. Softw. 39(0), 149–158 (2013). https://doi.org/10.1016/j.envsoft.2012.05.014 CrossRefGoogle Scholar
- 71.Beven, K.: Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. Hydrol. Earth Syst. Sci. 11(1), 460–467 (2007). https://doi.org/10.5194/hess-11-460-2007 CrossRefGoogle Scholar
- 72.Wiemann, S.S.R., Karrascha, P., Brauner, J., Pech, K., Bernard, L.: Classification-driven air pollution mapping as for environment and health analysis. In: Paper Presented at the iEMSs Sixth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2012), Leipzig. International Environmental Modelling and Software Society (2012)Google Scholar
- 73.Stasch, C., Foerster, T., Autermann, C., Pebesma, E.: Spatio-temporal aggregation of European air quality observations in the Sensor Web. Computers & Geosciences 47, 111-118 (2012). https://doi.org/10.1016/j.cageo.2011.11.008 CrossRefGoogle Scholar
- 74.ISO: ISO 19115-2 International Standard on Geographic information – Part 2: Metadata for imagery and gridded data. International Organization for Standardization (2005)Google Scholar
- 75.Henzen, C., Mäs, S., Bernard, L.: Provenance information in geodata infrastructures. In: Vandenbroucke, D., Bucher, B., Crompvoets, J. (Hrsg.) Geographic Information Science at the Heart of Europe. Lecture Notes in Geoinformation and Cartography, S. 131–151. Springer, Heidelberg (2013)Google Scholar
- 76.Pebesma, E.J., de Jong, K., Briggs, D.: Interactive visualization of uncertain spatial and spatio-temporal data under different scenarios: an air quality example. Int. J. Geograph. Inf. Sci. 21(5), 515–527 (2007). https://doi.org/10.1080/13658810601064009 CrossRefGoogle Scholar
- 77.Jung-Hong, H., Min-Lang, H.: Interoperable GIS operations: a quality-aware perspective. In: Gensel, J., Josselin, D., Vandenbroucke, D. (Hrsg.) 15th AGILE International Conference on Geographic Information Science, Avignon (2012)Google Scholar
Copyright information
© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019