Advertisement

Geoinformation zur Navigationsunterstützung

  • Stephan WinterEmail author
Chapter
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Orientierung im Raum und die Suche nach Wegen sind fundamentale Alltagsaufgaben des Menschen. Tatsächlich leistet das Gehirn einen Großteil dieser Aufgaben selbständig und unterbewusst, indem es auf repräsentiertes Wissen, auf Erfahrungen und Strategien (Heuristiken), und auf Sinneswahrnehmungen zugreift. Darüberhinaus hat der Mensch immer schon externes Wissen als Ergänzung gesucht und integriert. Sowohl Höhlenmalereien als auch Dialoge, Karten, Autonavigationssysteme und Mobilitätswebseiten sind solche Mittel. Dieses Kapitel wirft daher zunächst einen Blick auf die raumkognitiven Fähigkeiten des Menschen, um dann zu fragen, welche Art von zusätzlicher räumlicher Information diese Fähigkeiten sinnvoll unterstützen kann. Aus dieser Perspektive lassen sich des Weiteren Kriterien und Methoden ableiten, wie Mensch und Maschine effektiv über Bewegung im Raum kommunizieren.

Schlüsselwörter

Navigation Raumkognition Wegefindung Geoinformation Räumliche Information Spatial information Spatial cognition Wayfinding 

Literatur

  1. 1.
    Agrawala, M., Stolte, C.: A design and implementation for effective computer-generated route maps. In: Butz, A., Krger, A., Olivier, P. (Hrsg.) AAAI Symposium on Smart Graphics, Stanford, S. 61–65. AAAI Press (2000)Google Scholar
  2. 2.
    Agrawala, M., Stolte, C.: Rendering effective route maps: improving usability through generalization. In: SIGGRAPH 2001, Los Angeles, S. 241–250. ACM (2001)Google Scholar
  3. 3.
    Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford (1977)Google Scholar
  4. 4.
    Bailenson, J.N., Shum, M.S., Uttal, D.H.: The initial segment strategy: A heuristic for route selection. Mem. Cogn. 28(2), 306–318 (2000)CrossRefGoogle Scholar
  5. 5.
    Bell, S., Saucier, D.: Relationship among environmental pointing accuracy, mental rotation, sex, and hormones. Env. Behav. 36(2), 251–265 (2004)CrossRefGoogle Scholar
  6. 6.
    Chatwin, B.: The Songlines. Viking Penguin Inc., New York (1987)Google Scholar
  7. 7.
    Christaller, W.: Die zentralen Orte in Süddeutschland. Gustav Fischer, Jena (1933)Google Scholar
  8. 8.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)CrossRefGoogle Scholar
  9. 9.
    Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Curr. Psychol. Cogn. 16(4), 409–458 (1997)Google Scholar
  10. 10.
    Denis, M., Loomis, J.M.: Perspectives on human spatial cognition: memory, navigation and environmental learning. Psychol. Res. 71, 235–239 (2006)CrossRefGoogle Scholar
  11. 11.
    Denis, M., Michon, P.E., Tom, A.: Assisting pedestrian wayfinding in urban settings: why references to landmarks are crucial in direction-giving. In: Allen, G.L. (Hrsg.) Applied Spatial Cognition: From Research to Cognitive Technology, S. 25–51. Lawrence Erlbaum Associates, Mahwah (2007)Google Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)CrossRefGoogle Scholar
  13. 13.
    Dourish, P.: Seeking a foundation for context-aware computing. Hum.-Comput. Interact. 16(2), 229–241 (2001)CrossRefGoogle Scholar
  14. 14.
    Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. The MIT Press, Cambridge (2001). Tangible bits, social computing, embodiment, embodied interactionGoogle Scholar
  15. 15.
    Duckham, M., Kulik, L.: „simplest paths“: Automated route selection for navigation. In: Kuhn, W., Worboys, M., Timpf, S. (Hrsg.) Spatial Information Theory. Lecture Notes in Computer Science, Bd. 2825, S. 169–185. Springer, Berlin (2003)Google Scholar
  16. 16.
    Duckham, M., Winter, S., Robinson, M.: Including landmarks in routing instructions. J. Locat.-Based Serv. 4(1), 28–52 (2010)CrossRefGoogle Scholar
  17. 17.
    Egenhofer, M.J.: Query processing in spatial-query-by-sketch. J. Vis. Lang. Comput. 8(4), 403–424 (1997)CrossRefGoogle Scholar
  18. 18.
    Fontaine, S., Denis, M.: The production of route instructions in underground and urban environments. In: Freksa, C., Mark, D.M. (Hrsg.) Spatial Information Theory. Lecture Notes in Computer Science, Bd. 1661, S. 83–94. Springer, Berlin (1999)Google Scholar
  19. 19.
    French, R.M.: Subcognition and the limits of the Turing test. Mind 99(393), 53–65 (1990)CrossRefGoogle Scholar
  20. 20.
    French, R.M.: The Turing test: The first fifty years. Trends Cogn. Sci. 4(3), 115–121 (2000)CrossRefGoogle Scholar
  21. 21.
    French, R.M.: Moving beyond the Turing test. Commun. ACM 55(12), 74–77 (2012)CrossRefGoogle Scholar
  22. 22.
    Gardner, H.: Frames of Mind: The Theory of Multiple Intelligences, EBL, Bd. 3. Basic Books, New York (2011)Google Scholar
  23. 23.
    Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (Hrsg.) Perceiving, Acting, and Knowing, S. 67–82. Lawrence Erlbaum Associates, Hillsdale (1977)Google Scholar
  24. 24.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)Google Scholar
  25. 25.
    Gigerenzer, G., Todd, P.M., Group, A.R.: Simple Heuristics That Make Us Smart. Evolution and Cognition. Oxford University Press, New York (1999)Google Scholar
  26. 26.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A: Efficient point-to-point shortest path algorithms. In: Raman, R., Stallmann, M.F. (Hrsg.) Eighth Workshop on Algorithm Engineering and Experiments (ALENEX), S. 129–143. SIAM, Miami (2006)CrossRefGoogle Scholar
  27. 27.
    Goodchild, M.F.: Formalizing place in geographical information systems. In: Burton, L.M., Kemp, S.P., Leung, M.C., Matthews, S.A., Takeuchi, D.T. (Hrsg.) Communities, Neighborhoods, and Health: Expanding the Boundaries of Place, S. 21–35. Springer, New York (2011)CrossRefGoogle Scholar
  28. 28.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  29. 29.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)CrossRefGoogle Scholar
  30. 30.
    Hill, L.L.: Georeferencing: The Geographic Associations of Information. Digital Libraries and Electronic Publishing. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  31. 31.
    Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
  32. 32.
    Hirtle, S.C., Jonides, J.: Evidence of hierarchies in cognitive maps. Mem. Cogn. 13(3), 208–217 (1985)CrossRefGoogle Scholar
  33. 33.
    Hochmair, H.: Investigating the effectiveness of the least-angle strategy for wayfinding in unknown street networks. Environ. Plan. B: Plan. Des. 32(5), 673–691 (2005)CrossRefGoogle Scholar
  34. 34.
    Hollenstein, L., Purves, R.: Exploring place through user-generated content: Using flickr to describe city cores. J. Spat. Inf. Sci. 1(1), 21–48 (2010)Google Scholar
  35. 35.
    Howard, L., Javadi, A., Yu, Y., Mill, R., Morrison, L., Knight, R., Loftus, M., Staskute, L., Spiers, H.: The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation. Curr. Biol. 24(12), 1331–1340 (2014)CrossRefGoogle Scholar
  36. 36.
    Hutchins, E.: Cognition in the Wild. The MIT Press, Cambridge (1995)Google Scholar
  37. 37.
    Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.J.: An affordance-based model of place in GIS. In: Poiker, T.K., Chrisman, N. (Hrsg.) 8th International Symposium on Spatial Data Handling, Burnaby, S. 98–109. IGU (1998)Google Scholar
  38. 38.
    Kaptelinin, V., Nardi, B., Macaulay, C.: The activity checklist: A tool for representing the „space“ of context. Interactions 6(4), 27–39 (1999)CrossRefGoogle Scholar
  39. 39.
    Klein, W.: Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik 33, 9–57 (1979)Google Scholar
  40. 40.
    Knauff, M.: Space to Reason: A Spatial Theory of Human Thought. MIT Press, Cambridge (2013)CrossRefGoogle Scholar
  41. 41.
    Lakoff, G., Johnson, M.: Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought. Basic Books, New York (1999)Google Scholar
  42. 42.
    Landau, B., Jackendoff, R.: „what“ and „where“ in spatial language and spatial cognition. Behav. Brain Sci. 16(2), 217–238 (1993)Google Scholar
  43. 43.
    Levesque, H., Davis, E., Morgenstern, L.: The winograd schema challenge. In: Eiter, T., McIlraith, S. (Hrsg.) Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning, Rome. AAAI Press (2012)Google Scholar
  44. 44.
    Lynch, K.: The Image of the City. The MIT Press, Cambridge (1960)Google Scholar
  45. 45.
    Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S.J., Frith, C.D., O’Keefe, J.: Knowing where and getting there: A human navigation network. Science 280(5365), 921–924 (1998)CrossRefGoogle Scholar
  46. 46.
    Mark, D.M.: Finding simple routes: ,Ease of description‘ as an objective function in automated route selection. In: Second Symposium on Artificial Intelligence Applications, Miami Beach, S. 577–581. IEEE (1985)Google Scholar
  47. 47.
    McNamara, T.P.: Mental representations of spatial relations. Cogn. Psychol. 18(1), 87–121 (1986)CrossRefGoogle Scholar
  48. 48.
    Michon, P.E., Denis, M.: When and why are visual landmarks used in giving directions? In: Montello, D.R. (Hrsg.) Spatial Information Theory. Lecture Notes in Computer Science, Bd. 2205, S. 292–305. Springer, Berlin (2001)CrossRefGoogle Scholar
  49. 49.
    Miller, H.J., Shaw, S.L.: Geographic Information Systems for Transportation. Spatial Information Systems. Oxford University Press, Oxford (2001)Google Scholar
  50. 50.
    Montello, D.R.: Spatial cognition. In: Smelser, N.J., Baltes, P.B. (Hrsg.) International Encyclopedia of the Social & Behavioral Sciences, S. 14,771–14,775. Pergamon Press, Oxford (2001)CrossRefGoogle Scholar
  51. 51.
    Montello, D.R.: Navigation. In: Shah, P., Miyake, A. (Hrsg.) The Cambridge Handbook of Visuospatial Thinking, S. 257–294. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  52. 52.
    Ogden, C.K., Richards, I.A.: The Meaning of Meaning: A Study of the Influence of Language Upon Thought and of the Science of Symbolism. Routledge & Kegan Paul, London (1923)Google Scholar
  53. 53.
    O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)Google Scholar
  54. 54.
    Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)CrossRefGoogle Scholar
  55. 55.
    Plumert, J.M., Spalding, T.L., Nichols-Whitehead, P.: Preferences for ascending and descending hierarchical organization in spatial communication. Mem. Cogn. 29(2), 274–284 (2001)CrossRefGoogle Scholar
  56. 56.
    Psaraftis, H.N.: Dynamic vehicle routing: status and prospects. Ann. Oper. Res. 61(1), 143–164 (1995)CrossRefGoogle Scholar
  57. 57.
    Raney, B., Nagel, K.: Iterative route planning for large-scale modular transportation simulations. Future Gener. Comput. Syst. 20(7), 1101–1118 (2004)CrossRefGoogle Scholar
  58. 58.
    Richter, D., Vasardani, M., Stirling, L., Richter, K.F., Winter, S.: Zooming in – zooming out: hierarchies in place descriptions. In: Krisp, J.M. (Hrsg.) Progress in Location-Based Services. Lecture Notes in Geoinformation and Cartography, S. 339–355. Springer, Berlin (2013)Google Scholar
  59. 59.
    Richter, K.F., Winter, S.: Landmarks: GIScience for Intelligent Services. Springer, Cham (2014)CrossRefGoogle Scholar
  60. 60.
    Schwering, A.: Approaches to semantic similarity measurement for geo-spatial data: a survey. Trans. GIS 12(1), 5–29 (2008)CrossRefGoogle Scholar
  61. 61.
    Searle, J.R.: Minds, brains, and programs. Behav. Brain Sci. 3, 417–424 (1980)CrossRefGoogle Scholar
  62. 62.
    Shanon, B.: Where questions. In: 17th Annual Meeting of the Association for Computational Linguistics, La Jolla. ACL (1979)Google Scholar
  63. 63.
    Shieber, S.M.: Lessons from a restricted Turing test. Commun. ACM 37(6), 70–78 (1994)CrossRefGoogle Scholar
  64. 64.
    Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H.W. (Hrsg.) Advances in Child Development and Behavior, Bd. 10, S. 9–55. Academic Press, New York (1975)Google Scholar
  65. 65.
    Smith, B., Mark, D.M.: Do mountains exist? Towards an ontology of landforms. Env. Plan. B 30(3), 411–427 (2003)Google Scholar
  66. 66.
    Stevens, A., Coupe, P.: Distortions in judged spatial relations. Cogn. Psychol. 10(4), 422–437 (1978)CrossRefGoogle Scholar
  67. 67.
    Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms, 2. Aufl. Prentice Hall, Upper Saddle River (2006)Google Scholar
  68. 68.
    Taube, J.S., Muller, R.U., Ranck, J.B.: Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10(2), 420–435 (1990)Google Scholar
  69. 69.
    Tom, A., Denis, M.: Referring to landmark or street information in route directions: what difference does it make? In: Kuhn, W., Worboys, M., Timpf, S. (Hrsg.) Spatial Information Theory. Lecture Notes in Computer Science, Bd. 2825, S. 384–397. Springer, Berlin (2003)Google Scholar
  70. 70.
    Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)CrossRefGoogle Scholar
  71. 71.
    Uexküll, J.v.: Kompositionslehre der Natur: Biologie als undogmatische Naturwissenschaft. Propyläen-Verlag, Berlin (1980)Google Scholar
  72. 72.
    Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geographical search on the web. In: Advances in Spatial and Temporal Databases, Angra dos Reis, S. 923–923 (2005)Google Scholar
  73. 73.
    Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and the Human Experience. The MIT Press, Cambridge (1991)CrossRefGoogle Scholar
  74. 74.
    Vasardani, M., Timpf, S., Winter, S., Tomko, M.: From descriptions to depictions: a conceptual framework. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (Hrsg.) Spatial Information Theory. Lecture Notes in Computer Science, Bd. 8116, S. 299–319. Springer, Cham (2013)CrossRefGoogle Scholar
  75. 75.
    Weisbrod, G.: Models to predict the economic development impact of transportation projects: historical experience and new applications. Ann. Reg. Sci. 42(3), 519–543 (2008)CrossRefGoogle Scholar
  76. 76.
    Weiser, M., Brown, J.S.: The coming age of calm technology. In: Denning, P.J., Metcalfe, R.M. (Hrsg.) Beyond Calculation: The next fifty years of computing, S. 75–85. Copernicus, New York (1997)CrossRefGoogle Scholar
  77. 77.
    Wiener, J.M., Mallot, H.A.: ,Fine-to-coarse‘ route planning and navigation in regionalized environments. Spat. Cogn. Comput. 3(4), 331–358 (2003)CrossRefGoogle Scholar
  78. 78.
    Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. John Wiley, New York (1948)Google Scholar
  79. 79.
    Winter, S.: Spatial intelligence: ready for a challenge? Spat. Cogn. Comput. 9(2), 138–151 (2009)CrossRefGoogle Scholar
  80. 80.
    Winter, S., Freksa, C.: Approaching the notion of place by contrast. J. Spat. Inf. Sci. 2012(5), 31–50 (2012)Google Scholar
  81. 81.
    Wolbers, T., Hegarty, M.: What determines our navigational abilities? Trends Cogn. Sci. 14(3), 138–146 (2010)CrossRefGoogle Scholar
  82. 82.
    Wolbers, T., Hegarty, M., Büchel, C., Loomis, J.M.: Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat. Neurosci. 11(10), 1223–1230 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Infrastructure EngineeringThe University of MelbourneParkvilleAustralien

Personalised recommendations