Advertisement

Kontextbasierte Ansätze in der Bildanalyse

  • Franz RottensteinerEmail author
Chapter
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Dieses Kapitel befasst sich mit statistischen Methoden zur Berücksichtigung von Kontext in der Klassifikation von Bildern und Punktwolken. Zunächst werden lokale Verfahren der Klassifikation, welche Bildprimitive oder Laserpunkte unabhängig von einander klassifizieren, im Überblick besprochen. Anschließend werden die theoretischen Grundlagen für statistische Modelle von Kontext behandelt, wobei der Schwerpunkt der Darstellung auf Markov-Zufallsfeldern sowie Conditional Random Fields (CRF) liegt. Schließlich werden vier aktuelle Anwendungen von CRF in Photogrammetrie und Fernerkundung vorgestellt: die Klassifikation von flugzeuggestützten Laserscannerdaten, die Aktualisierung der tatsächlichen Nutzung in ALKIS, die Klassifikation von Luftbildern und Oberflächenmodellen unter Berücksichtigung von Verdeckungen, sowie die multitemporale Klassifikation von Satellitenbildern.

Schlüsselwörter

Klassifikation Bildanalyse Kontext Conditional Random Fields Markov Random Fields 

Notes

Danksagung

Die Vaihingen-Daten wurden von der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation zur Verfügung gestellt [13]: http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html. Die Referenzdaten wurden von RAG Steinkohle AG and SIRADEL (http://www.siradel.com) erfasst. Die in Abschn. 4.2 beschriebenen Arbeiten wurden vom Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) und dem Landesamt für Vermessung und Geoinformation Schleswig-Holstein (LVermGeo SH) unterstützt. Die Arbeiten aus Abschn. 4.3 entstanden im Rahmen der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekte HE 1822/25-1 und HI 1289/1-1. Abschn. 4.4 beruht auf den Ergebnissen des DFG-Projekts 1822/22-1. Die dort beschriebenen Methoden wurden mit Hilfe der CRF Toolbox von Kevin Murphy und Mark Schmidt implementiert: www.cs.ubc.ca/~murphyk/Software/CRF/crf.html. Der Autor möchte sich bei folgenden Personen bedanken, auf deren Arbeiten in Abschn. 4 zurückgegriffen wurde: Joachim Niemeyer (Abschn. 4.1), Lena Albert (Abschn. 4.2), Sergej Kosov (Abschn. 4.3) und Thorsten Hoberg (Abschn. 4.4).

Literatur

  1. 1.
    AdV: Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland: ALKIS-Objektartenkatalog 6.0. http://www.adv-online.de/AAA-Modell/Dokumente-der-GeoInfoDok/. Zugegriffen am 20.05.2016 (2008)
  2. 2.
    Albert, L., Rottensteiner, F., Heipke, C.: Land use classification using conditional random fields for the verification of geospatial databases. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II-4, 1–7 (2014)CrossRefGoogle Scholar
  3. 3.
    Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48(3), 259–302 (1986)Google Scholar
  4. 4.
    Bishop, C.M.: Pattern Recognition and Machine Learning, 1. Aufl. Springer, New York (2006)Google Scholar
  5. 5.
    Bogaert, J., Rousseau, R., Hecke, P.F., Impens, I.: Alternative area-perimeter ratios for measurement of 2D shape compactness of habitats. Appl. Math. Comput. 111(1), 71–85 (2000)Google Scholar
  6. 6.
    Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Vancouver, Bd. 1, S. 105–112 (2001)Google Scholar
  7. 7.
    Boykov, Y.Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  8. 8.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  9. 9.
    Chai, D., Förstner, W., Lafarge, F.: Recovering line-networks in images by junction-point processes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, S. 1894–1901 (2013)Google Scholar
  10. 10.
    Chai, D., Förstner, W., Yang, M.Y.: Combine Markov random fields and marked point processes to extract building from remotely sensed image. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-3, 365–370 (2012)CrossRefGoogle Scholar
  11. 11.
    Chehata, N., Guo, L., Mallet, C.: Airborne lidar feature selection for urban classification using random forests. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVIII-3/W8, 207–212 (2009)Google Scholar
  12. 12.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)Google Scholar
  13. 13.
    Cramer, M.: The DGPF test on digital aerial camera evaluation – overview and test design. Photogramm. Fernerkund. Geoinformation 2/2010, 73–82 (2010)Google Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, S. 886–893 (2005)Google Scholar
  15. 15.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2. Aufl. Wiley, New York (2001)Google Scholar
  16. 16.
    Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labelling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)CrossRefGoogle Scholar
  17. 17.
    Förstner, W.: Graphical models in geodesy and photogrammetry. Photogramm. Fernerkund. Geoinformation 4/2013, 255–268 (2013)Google Scholar
  18. 18.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference Machine Learning, Bari, S. 148–156 (1996)Google Scholar
  19. 19.
    Frey, B.J., MacKay, D.J.C.: A revolution: belief propagation in graphs with cycles. In: Proceedings of the Neural Information Processing Systems Conference, Denver, S. 479–485 (1998)Google Scholar
  20. 20.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)CrossRefGoogle Scholar
  21. 21.
    Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. Int. J. Comput. Vis. 80(3), 300–316 (2008)CrossRefGoogle Scholar
  22. 22.
    Hall, M.A.: Correlation-based feature subset selection for machine learning. PhD thesis, Department of Computer Science, University of Waikato, Hamilton. http://www.cs.waikato.ac.nz//ml/publications/1999/99MH-Thesis.pdf. Zugegriffen am 20.05.2016 (1999)
  23. 23.
    Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Unveröffentlichtes Manuskript. verfügbar im WWW: http://www.statslab.cam.ac.uk/~grg/books/hammfest/hamm-cliff.pdf. Zugegriffen am 20.05.2016 (1971)
  24. 24.
    Hänsch, R., Hellwich, O.: Random forests. In: Heipke, C. (Hrsg.) Handbuch Geodäsie, 1. Aufl. Photogrammetrie und Fernerkundung, Kapitel 3. Springer, New York (2015)Google Scholar
  25. 25.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–622 (1973)CrossRefGoogle Scholar
  26. 26.
    Helmholz, P., Rottensteiner, F., Heipke, C.: Semi-automatic verification of cropland and grassland using very high resolution mono-temporal satellite images. ISPRS J. Photogramm. Remote Sens. 97/2014, 204–218 (2014)Google Scholar
  27. 27.
    Hinz, S., Baumgartner, A.: Automatic extraction of urban road networks from multi-view aerial imagery. ISPRS J. Photogramm. Remote Sens. 58(1–2), 83–98 (2003)CrossRefGoogle Scholar
  28. 28.
    Hoberg, T., Rottensteiner, F., Feitosa, R.Q., Heipke, C.: Conditional random fields for multitemporal and multiscale classification of optical satellite imagery. IEEE Trans. Geosci. Remote Sens. 53(2), 659–673 (2015)CrossRefGoogle Scholar
  29. 29.
    Hoberg, T., Rottensteiner, F., Heipke, C.: Context models for CRF-based classification of multitemporal remote sensing data. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-7, 128–134 (2012)CrossRefGoogle Scholar
  30. 30.
    Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)CrossRefGoogle Scholar
  31. 31.
    Kohli, P., Ladický, L., Torr, P.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vis. 82, 302–324 (2009)CrossRefGoogle Scholar
  32. 32.
    Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  33. 33.
    Kosov, S., Rottensteiner, F., Heipke, C.: Sequential gaussian mixture models for two-level conditional random fields. In: Proceedings of the 35th German Conference on Pattern Recognition (GCPR). LNCS, Bd. 8142, S. 153–163. Springer, Heidelberg (2013)Google Scholar
  34. 34.
    Krummel, J.R., Gardner, R.H., Sugihara, G., Coleman, V.O.P.R.: Landscape patterns in a disturbed environment. OIKOS 48(3), 321–324 (1987)CrossRefGoogle Scholar
  35. 35.
    Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vis. 68(2), 179–201 (2006)CrossRefGoogle Scholar
  36. 36.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning, Williamstown, S. 282–289 (2001)Google Scholar
  37. 37.
    Laws, K.I.: Rapid texture identification. In: Proceedings of the SPIE Conference on Image Processing for Missile Guidance, S. 376–380 (1980)Google Scholar
  38. 38.
    Leite, P.B.C., Feitosa, R.Q., Formaggio, A.R., Costa, G.A.O.P., Pakzad, K.: Hidden Markov models for crop recognition in remote sensing image sequences. Pattern Recognit. Lett. 32(1), 19–26 (2011)CrossRefGoogle Scholar
  39. 39.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis, 3. Aufl. Springer, London (2009)Google Scholar
  40. 40.
    Liu, D., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Programm. 45, 503–528 (1989)CrossRefGoogle Scholar
  41. 41.
    Mallet, C., Bretar, F.: Full-waveform topographic LiDAR: state-of-the-art. ISPRS J. Photogramm. Remote Sens. 64(1), 1–16 (2009)CrossRefGoogle Scholar
  42. 42.
    Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3/W5, 427–434 (2015, im Druck)Google Scholar
  43. 43.
    Niemeyer, J., Rottensteiner, F., Sörgel, U.: Contextual classification of Lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 87(2014), 152–165 (2014)CrossRefGoogle Scholar
  44. 44.
    Ortner, M., Descombe, X., Zerubia, J.: A marked point process of rectangles and segments for automatic analysis of digital elevation models. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 105–119 (2008)CrossRefGoogle Scholar
  45. 45.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. Comput. Graph. Forum 22(3), 81–89 (2003)CrossRefGoogle Scholar
  46. 46.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, S. 61–74. MIT, Cambridge (2000)Google Scholar
  47. 47.
    Randen, T., Husøy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)CrossRefGoogle Scholar
  48. 48.
    Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 93(2014), 256–271 (2014)CrossRefGoogle Scholar
  49. 49.
    Rottensteiner, F., Trinder, J., Clode, S., Kubik, K.: Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection. Inf. Fusion 6(4), 283–300 (2005)CrossRefGoogle Scholar
  50. 50.
    Rutzinger, M., Rottensteiner, F., Pfeifer, N.: A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2(1), 11–20 (2009)CrossRefGoogle Scholar
  51. 51.
    Schindler, K.: An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote Sens. 50(11), 4534–4545 (2012)CrossRefGoogle Scholar
  52. 52.
    Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81(1), 2–23 (2009)CrossRefGoogle Scholar
  53. 53.
    Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 59(1), 85–101 (2004)CrossRefGoogle Scholar
  54. 54.
    Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accelerated training of conditional random fields with stochastic gradient methods. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, S. 969–976 (2006)Google Scholar
  55. 55.
    Wegner, J.D., Montoya-Zegarra, J.A., Schindler, K.: A higher-order CRF model for road network extraction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, S. 1698–1705 (2013)Google Scholar
  56. 56.
    Weinmann, M., Schmidt, A., Mallet, C., Hinz, S., Rottensteiner, F., Jutzi, B.: Contextual classification of point cloud data by exploiting individual 3D neighbourhoods. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. II-3/W4, 271–278 (2015)Google Scholar
  57. 57.
    Wolf, L., Bileschi, S.: A critical view on context. Int. J. Comput. Vis. 69(2), 251–261 (2006)CrossRefGoogle Scholar
  58. 58.
    Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)Google Scholar
  59. 59.
    Yang, M.Y., Förstner, W.: A hierarchical conditional random field model for labelling and classifying images of man-made scenes. In: Proceedings of the 1st IEEE/ISPRS Workshop on Computer Vision for Remote Sensing of the Environment, Barcelona, S. 196–203 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Institut für Photogrammetrie und GeoInformationLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations