Advertisement

A Framework of Moving Object Segmentation in Maritime Surveillance Inside a Dynamic Background

  • Alok Kumar Singh KushwahaEmail author
  • Rajeev Srivastava
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9030)

Abstract

Maritime surveillance represents a challenging scenario for moving object segmentation due to the complexity of the observed scenes. The waves on the water surface, boat wakes, and weather issues contribute to generate a highly dynamic background. Moving object segmentation using change detection under maritime environment is a challenging problem for the maritime surveillance system. To address these issues, a fast and robust moving object segmentation approach is proposed which consist of seven steps applied on given video frames which include wavelet decomposition of frames using complex wavelet transform; use of change detection on detail coefficients (LH, HL, HH); use of background modeling on approximate co-efficient (LL sub-band); cast shadow suppression; strong edge detection; inverse wavelet transformation for reconstruction; and finally using closing morphology operator. For dynamic background modeling in the water surface, we have used background registration, background difference, and background difference mask in the complex wavelet domain. For shadow detection and suppression problem in water surface, we exploit the high frequency sub-band in the complex wavelet domain. A comparative analysis of the proposed method is presented both qualitatively and quantitatively with other standard methods available in the literature for seven datasets. The various performance measures used for quantitative analysis include relative foreground area measure (RFAM), misclassification penalty (MP), relative position based measure (RPM), normalized cross correlation (NCC), Precision (PR), Recall (RE), shadow detection rate (SDR), shadow discrimination rate, execution time and memory consumption. Experimental results indicate that the proposed method is performing better in comparison to other methods in consideration for all the test cases as well as addresses all the issues effectively.

Keywords

Moving object segmentation Maritime surveillance Change detection Dynamic background Wavelet transform Performance measure 

References

  1. 1.
    El-Sayed, S.K., Ahmed, S.: Moving object detection in spatial domain using background removal techniques - state-of-on computer science. Recent Pat. Comput. Sci. 1, 32–54 (2008)CrossRefGoogle Scholar
  2. 2.
    Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Sig. Process. 2010, 1–24 (2010)CrossRefGoogle Scholar
  3. 3.
    Cheung, S-C., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: Proceedings of the SPIE 5308 Conference of Visual Communications and Image Processing, vol. 5308, pp. 881–892 (2004)Google Scholar
  4. 4.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real time foreground background segmentation using codebook model. Real Time Imaging 11, 172–185 (2005)CrossRefGoogle Scholar
  5. 5.
    Kushwaha, A.K.S., Sharma, C.M., Khare, M., Prakash, O., Khare, A.: Adaptive real-time motion segmentation technique based on statistical background model. Imaging Sci. J. 62, 285–302 (2014)CrossRefGoogle Scholar
  6. 6.
    McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Mach. Vis. Appl. 8, 187–193 (1995)CrossRefGoogle Scholar
  7. 7.
    Remagnino, P., Baumberg, A., Grove, T., Hogg, D., Tan, T., Worrall, A., Baker, K.: An integrated traffic and pedestrian model-based vision system. In: Proceedings of the Eighth British Machine Vision Conference, pp. 380–389 (1997)Google Scholar
  8. 8.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1999), vol. 2, pp. 246–252 (1999)Google Scholar
  9. 9.
    Kim, C., Hwang, J.-N.: Fast and automatic video object segmentation and tracking for content-based applications. IEEE Trans. Circ. Syst. Video Technol. 12, 122–129 (2002)CrossRefGoogle Scholar
  10. 10.
    Shih, M.-Y., Chang, Y.-J., Fu, B.-C., Huang, C.-C.: Motion-based back-ground modeling for moving object detection on moving platforms. In: Proceedings of the International Conference on Computer Communications and Networks, pp. 1178–1182 (2007)Google Scholar
  11. 11.
    Huang, J.C., Hsieh, W.S.: Wavelet based moving object segmentation. Electron. Lett. 39, 1380–1382 (2003)CrossRefGoogle Scholar
  12. 12.
    Huang, J.C., Su, T.S., Wang, L.J., Hsieh, W.S.: Double change detection method for wavelet based moving object segmentation. Electron. Lett. 40, 798–799 (2004)CrossRefGoogle Scholar
  13. 13.
    Baradarani, A., Wu, Q.M.J.: Wavelet based moving object segmentation: from scalar wavelets to dual-tree complex filter banks. In: Herout, A. (ed.) Pattern Recognition Recent Advances. InTech Open Access, Rijeka (2010)Google Scholar
  14. 14.
    Baradarani, A.: Moving object segmentation using 9/7-10/8 dual tree complex filter bank. In: Proceeding of IEEE 19th International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)Google Scholar
  15. 15.
    Khare, M., Srivastava, R.K., Khare, A.: Single change detection-based moving object segmentation by using Daubechies complex wavelet transform. IET Image Proc. 8, 334–344 (2014)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Chen, X., Chen, Y., Xie, C.: Double change detection method for moving-object segmentation based on clustering. In: IEEE ISCAS 2006 Circuits and Systems, pp. 5027–5030 (2006)Google Scholar
  17. 17.
    Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 918–923 (2003)CrossRefGoogle Scholar
  18. 18.
    Guan, Y.P.: Spatio-temporal motion-based foreground segmentation and shadow suppression. IET Comput. Vis. 4, 50–60 (2010)CrossRefGoogle Scholar
  19. 19.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Khare, M., Srivastava, R.K., Khare, A.: Dual tree complex wavelet transform based shadow detection and removal from moving objects. In: Proceeding of 26th SPIE Electronic Imaging, vol. 9029, pp. 1–7 (2014)Google Scholar
  21. 21.
    Hsia, C.-H., Guo, J.-M.: Efficient modified direction al lifting-based discrete wavelet transform for moving object detection. J. Sig. Process. 96, 138–152 (2014)CrossRefGoogle Scholar
  22. 22.
    Bloisi, D.D., Pennisi, A., Iocchi, L.: Background modeling in the maritime domain. Mach. Vis. Appl. 25, 1257–1269 (2014)CrossRefGoogle Scholar
  23. 23.
    Aacj, T., Kaup, A., Mester, R.: Statistical model-based change detection in moving video. J. Sig. Process. 31, 165–180 (1993)CrossRefGoogle Scholar
  24. 24.
    Romberg, J.K., Choi, H., Baraniuk, R.G.: Multiscale edge grammars for complex wavelet transforms. In: Proceedings of the IEEE International Conference on Image Processing, pp. 614–617 (2001)Google Scholar
  25. 25.
    Sridhar, S.: Digital image processing, 3rd edn. Oxford Publication, Oxford (2008)Google Scholar
  26. 26.
    Bloisi, D., Iocchi, L., Pennisi, A., Previtali, F.: http://www.dis.uniroma1.it/~labrococo/MAR/dataset.htm
  27. 27.
    Gao-bo, Y., Zhao-yang, Z.: Objective performance evaluation of video segmentation algorithms with Ground-Truth. J. Shanghai University. 8, 70–74 (2004)CrossRefGoogle Scholar
  28. 28.
    Eskicioglu, A.M., Fisher, P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43, 2959–2965 (1995)CrossRefGoogle Scholar
  29. 29.
    Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: algorithms and evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 918–923 (2003)CrossRefGoogle Scholar
  30. 30.
    Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: http://changedetection.net/
  31. 31.
    Subudhi, B.N., Ghosh, S., Ghosh, A.: Change detection for moving object segmentation with robust background construction under wronskian framework. Mach. Vis. Appl. 24, 795–809 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alok Kumar Singh Kushwaha
    • 1
    Email author
  • Rajeev Srivastava
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations