Advertisement

A Basis for Lanthanide Single-Molecule Magnets

  • Jinkui Tang
  • Peng Zhang
Chapter

Abstract

The basic information on lanthanide single-molecule magnets (SMMs) has been introduced systematically in this chapter covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. In particular, the brief introduction to the single-crystal magnetic measurements and ab initio calculations of lanthanide SMMs demonstrate the up-to-date progresses on elucidating the magnetic anisotropy and relaxation mechanism of highly anisotropic lanthanide SMMs. Such basic knowledge is very essential for the readers to grasp the subject of this book.

Keywords

Single-molecule magnet Lanthanide ions Magnetic anisotropy Relaxation dynamics Ab initio calculations 

References

  1. 1.
    Christou G, Gatteschi D, Hendrickson DN et al (2000) Single-molecule magnets. MRS Bull 25(11):66–71. doi: 10.1557/mrs2000.204 CrossRefGoogle Scholar
  2. 2.
    Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11–12):1728–1763. doi: 10.1016/j.ccr.2013.01.012 CrossRefGoogle Scholar
  3. 3.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2(11):2078–2085. doi: 10.1039/C1SC00513H CrossRefGoogle Scholar
  4. 4.
    Huang C (2010) Rare earth coordination chemistry: fundamentals and applications. Wiley, SingaporeCrossRefGoogle Scholar
  5. 5.
    Goldschmidt ZB (1978) Atomic properties (free atom) Chap. 1. In: Gschneidner KA Jr, Eyring LR (eds) Handbook on the physics and chemistry of rare earths, vol 1. Elsevier, Amsterdam, pp 1–171. doi: 10.1016/S0168-1273(78)01005-3
  6. 6.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148. doi: 10.1021/cr400018q CrossRefGoogle Scholar
  7. 7.
    Buschow KHJ, Boer FRd (2003) Physics of magnetism and magnetic materials. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  8. 8.
    Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102(6):2369–2388. doi: 10.1021/cr010303r CrossRefGoogle Scholar
  9. 9.
    Getzlaff M (2008) Fundamentals of magnetism. Springer, BerlinGoogle Scholar
  10. 10.
    Morrish AH (1965) The physical principles of magnetism. Weily, New YorkGoogle Scholar
  11. 11.
    Skomski R (2008) Simple models of magnetism. Oxford University Press, New YorkCrossRefGoogle Scholar
  12. 12.
    Skomski R, Sellmyer DJ (2009) Anisotropy of rare-earth magnets. J Rare Earth 27(4):675–679. doi: 10.1016/S1002-0721(08)60314-2 CrossRefGoogle Scholar
  13. 13.
    Sievers J (1982) Asphericity of 4f-shells in their Hund’s rule ground states. Zeitschrift für Physik B Condensed Matter 45(4):289–296. doi: 10.1007/bf01321865 CrossRefADSGoogle Scholar
  14. 14.
    Ishikawa N, Sugita M, Ishikawa T et al (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125(29):8694–8695. doi: 10.1021/ja029629n CrossRefGoogle Scholar
  15. 15.
    Zhang P, Zhang L, Wang C et al (2014) Equatorially coordinated lanthanide single ion magnets. J Am Chem Soc 136(12):4484–4487. doi: 10.1021/ja500793x CrossRefGoogle Scholar
  16. 16.
    Chilton NF, Collison D, McInnes EJL et al (2013) An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat Commun 4:2551. doi: 10.1038/ncomms3551 CrossRefADSGoogle Scholar
  17. 17.
    Stevens KWH (1952) Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc Phys Soc A 65:209–215CrossRefADSzbMATHGoogle Scholar
  18. 18.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanides in molecular magnetism: old tools in a new field. Chem Soc Rev 40(6):3092–3104. doi: 10.1039/C0CS00185F CrossRefGoogle Scholar
  19. 19.
    Fukuda T, Matsumura K, Ishikawa N (2013) Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers. J Phys Chem A 117(40):10447–10454. doi: 10.1021/jp406009m CrossRefGoogle Scholar
  20. 20.
    Liu J-L, Chen Y-C, Zheng Y-Z et al (2013) Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem Sci 4(8):3310–3316. doi: 10.1039/c3sc50843a CrossRefGoogle Scholar
  21. 21.
    Caneschi A, Gatteschi D, Sessoli R et al (1991) Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O. J Am Chem Soc 113(15):5873–5874. doi: 10.1021/ja00015a057 CrossRefGoogle Scholar
  22. 22.
    Sessoli R, Tsai HL, Schake AR et al (1993) High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J Am Chem Soc 115(5):1804–1816CrossRefGoogle Scholar
  23. 23.
    Sessoli R, Gatteschi D, Caneschi A et al (1993) Magnetic bistability in a metal-ion cluster. Nature 365(6442):141–143. doi: 10.1038/365141a0 CrossRefADSGoogle Scholar
  24. 24.
    Aubin SMJ, Wemple MW, Adams DM et al (1996) Distorted \({\text{Mn}}^{\text{IV}} {\text{Mn}}_{3}^{\text{III}}\) Cubane Complexes as Single-Molecule Magnets. J Am Chem Soc 118(33):7746–7754. doi: 10.1021/ja960970f
  25. 25.
    Tasiopoulos AJ, Vinslava A, Wernsdorfer W et al (2004) Giant single-molecule magnets: a Mn84 torus and its supramolecular nanotubes. Angew Chem Int Ed 116(16):2169–2173. doi: 10.1002/ange.200353352 CrossRefGoogle Scholar
  26. 26.
    Ako AM, Hewitt IJ, Mereacre V et al (2006) A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew Chem Int Ed 118(30):5048–5051. doi: 10.1002/ange.200601467 CrossRefGoogle Scholar
  27. 27.
    Chakov NE, Lee S-C, Harter AG et al (2006) The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4]·4CH2Cl2. J Am Chem Soc 128(21):6975–6989. doi: 10.1021/ja060796n CrossRefGoogle Scholar
  28. 28.
    Sangregorio C, Ohm T, Paulsen C et al (1997) Quantum tunneling of the magnetization in an iron cluster nanomagnet. Phys Rev Lett 78(24):4645–4648CrossRefADSGoogle Scholar
  29. 29.
    Oshio H, Hoshino N, Ito T et al (2004) Single-molecule magnets of ferrous cubes: structurally controlled magnetic anisotropy. J Am Chem Soc 126(28):8805–8812. doi: 10.1021/ja0487933 CrossRefGoogle Scholar
  30. 30.
    Murrie M (2010) Cobalt(II) single-molecule magnets. Chem Soc Rev 39(6):1986–1995CrossRefGoogle Scholar
  31. 31.
    Qian K, Huang X-C, Zhou C et al (2013) A single-molecule magnet based on heptacyanomolybdate with the highest energy barrier for a cyanide compound. J Am Chem Soc 135(36):13302–13305. doi: 10.1021/ja4067833 CrossRefGoogle Scholar
  32. 32.
    Pointillart F, Bernot K, Sessoli R et al (2010) Field induced 4f-5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet. Inorg Chem 49(9):4355–4361. doi: 10.1021/ic1003287 CrossRefGoogle Scholar
  33. 33.
    Schelter EJ, Prosvirin AV, Dunbar KR (2004) Molecular cube of ReII and MnII that exhibits single-molecule magnetism. J Am Chem Soc 126(46):15004–15005. doi: 10.1021/ja047088r CrossRefGoogle Scholar
  34. 34.
    Guo Y-N, Chen X-H, Xue S et al (2012) Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates. Inorg Chem 51(7):4035–4042. doi: 10.1021/ic202170z CrossRefGoogle Scholar
  35. 35.
    Guo Y-N, Ungur L, Granroth GE et al (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471. doi: 10.1038/srep05471 ADSGoogle Scholar
  36. 36.
    Rinehart JD, Fang M, Evans WJ et al (2011) A N2 3– radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133(36):14236–14239. doi: 10.1021/ja206286h CrossRefGoogle Scholar
  37. 37.
    Meihaus KR, Long JR (2013) Magnetic blocking at 10 K and a dipolar-mediated avalanche in salts of the Bis(η8-cyclooctatetraenide) complex [Er(COT)2]. J Am Chem Soc 135(47):17952–17957. doi: 10.1021/ja4094814 CrossRefGoogle Scholar
  38. 38.
    Rinehart JD, Long JR (2009) Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J Am Chem Soc 131(35):12558–12559. doi: 10.1021/ja906012u CrossRefGoogle Scholar
  39. 39.
    Magnani N, Apostolidis C, Morgenstern A et al (2011) Magnetic memory effect in a transuranic mononuclear complex. Angew Chem Int Ed 50(7):1696–1698. doi: 10.1002/anie.201006619 CrossRefGoogle Scholar
  40. 40.
    Dei A, Gatteschi D (2011) Molecular (Nano) magnets as test grounds of quantum mechanics. Angew Chem Int Ed 50(50):11852–11858. doi: 10.1002/anie.201100818 CrossRefGoogle Scholar
  41. 41.
    Zadrozny JM, Xiao DJ, Atanasov M et al (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5(7):577–581. doi: 10.1038/nchem.1630 CrossRefGoogle Scholar
  42. 42.
    Gatteschi D, Sessoli R, Vallain J (2006) Molecular nanomagnets. Oxford University Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Ishikawa N, Sugita M, Ishikawa T et al (2004) Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J Phys Chem B 108(31):11265–11271. doi: 10.1021/jp0376065 CrossRefGoogle Scholar
  44. 44.
    Jiang S-D, Wang B-W, Sun H-L et al (2011) An organometallic single-ion magnet. J Am Chem Soc 133(13):4730–4733. doi: 10.1021/ja200198v CrossRefGoogle Scholar
  45. 45.
    Guo Y-N, Xu G-F, Wernsdorfer W et al (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133(31):11948–11951. doi: 10.1021/ja205035g CrossRefGoogle Scholar
  46. 46.
    Rogez G, Donnio B, Terazzi E et al (2009) The quest for nanoscale magnets: the example of [Mn12] single molecule magnets. Adv Mater 21(43):4323–4333. doi: 10.1002/adma.200803020 CrossRefGoogle Scholar
  47. 47.
    Ruiz E, Cirera J, Cano J et al (2008) Can large magnetic anisotropy and high spin really coexist? Chem Commun 1:52–54. doi: 10.1039/B714715E CrossRefGoogle Scholar
  48. 48.
    Milios CJ, Vinslava A, Wernsdorfer W et al (2007) A record anisotropy barrier for a single-molecule magnet. J Am Chem Soc 129(10):2754–2755. doi: 10.1021/ja068961m CrossRefGoogle Scholar
  49. 49.
    Freedman DE, Harman WH, Harris TD et al (2010) Slow magnetic relaxation in a high-spin Iron(II) complex. J Am Chem Soc 132(4):1224–1225. doi: 10.1021/ja909560d CrossRefGoogle Scholar
  50. 50.
    Harman WH, Harris TD, Freedman DE et al (2010) Slow magnetic relaxation in a family of trigonal pyramidal iron(II) pyrrolide complexes. J Am Chem Soc 132(51):18115–18126. doi: 10.1021/ja105291x CrossRefGoogle Scholar
  51. 51.
    Zadrozny JM, Long JR (2011) Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2–. J Am Chem Soc 133(51):20732–20734. doi: 10.1021/ja2100142 CrossRefGoogle Scholar
  52. 52.
    Zadrozny JM, Atanasov M, Bryan AM et al (2013) Slow magnetization dynamics in a series of two-coordinate iron(II) complexes. Chem Sci 4(1):125–138. doi: 10.1039/c2sc20801f CrossRefGoogle Scholar
  53. 53.
    Ishikawa N, Sugita M, Tanaka N et al (2004) Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S = 1/2 spin. Inorg Chem 43(18):5498–5500. doi: 10.1021/ic049348b CrossRefGoogle Scholar
  54. 54.
    Takamatsu S, Ishikawa T, Koshihara S et al (2007) Significant increase of the barrier energy for magnetization reversal of a single-4f-ionic single-molecule magnet by a longitudinal contraction of the coordination space. Inorg Chem 46(18):7250–7252. doi: 10.1021/ic700954t CrossRefGoogle Scholar
  55. 55.
    Ishikawa N, Mizuno Y, Takamatsu S et al (2008) Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a kramers ground state. Inorg Chem 47(22):10217–10219. doi: 10.1021/ic8014892 CrossRefGoogle Scholar
  56. 56.
    Ganivet CR, Ballesteros B, de la Torre G et al (2013) Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic TbIII bis(phthalocyaninate). Chem Eur J 19(4):1457–1465. doi: 10.1002/chem.201202600 CrossRefGoogle Scholar
  57. 57.
    Ishikawa N, Otsuka S, Kaizu Y (2005) The effect of the f-f interaction on the dynamic magnetism of a coupled 4f8 system in a dinuclear terbium complex with phthalocyanines. Angew Chem Int Ed 44(5):731–733. doi: 10.1002/anie.200461546 CrossRefGoogle Scholar
  58. 58.
    AlDamen MA, Clemente-Juan JM, Coronado E et al (2008) Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc 130(28):8874–8875. doi: 10.1021/ja801659m CrossRefGoogle Scholar
  59. 59.
    Jiang SD, Wang BW, Su G et al (2010) A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew Chem Int Ed 7448–7451. doi: 10.1002/anie.201004027
  60. 60.
    Chen G-J, Guo Y-N, Tian J-L et al (2012) Enhancing anisotropy barriers of dysprosium(III) single-ion magnets. Chem Eur J 18(9):2484–2487. doi: 10.1002/chem.201103816 CrossRefGoogle Scholar
  61. 61.
    Bi Y, Guo Y-N, Zhao L et al (2011) Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chem Eur J 17(44):12476–12481. doi: 10.1002/chem.201101838 CrossRefGoogle Scholar
  62. 62.
    Chen G-J, Gao C-Y, Tian J-L et al (2011) Coordination-perturbed single-molecule magnet behaviour of mononuclear dysprosium complexes. Dalton Trans 40:5579–5583CrossRefGoogle Scholar
  63. 63.
    Le Roy JJ, Korobkov I, Murugesu M (2014) A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium(III) ion. Chem Commun 50(13):1602–1604. doi: 10.1039/c3cc48557a CrossRefGoogle Scholar
  64. 64.
    Watanabe A, Yamashita A, Nakano M et al (2011) Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chem Eur J 17(27):7428–7432. doi: 10.1002/chem.201003538 CrossRefGoogle Scholar
  65. 65.
    Tang J, Hewitt I, Madhu NT et al (2006) Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed 45(11):1729–1733. doi: 10.1002/anie.200503564 CrossRefGoogle Scholar
  66. 66.
    Lin P-H, Burchell TJ, Clérac R et al (2008) Dinuclear dysprosium(III) single-molecule magnets with a large anisotropic barrier. Angew Chem Int Ed 47(46):8848–8851. doi: 10.1002/anie.200802966 CrossRefGoogle Scholar
  67. 67.
    Lin P-H, Burchell TJ, Ungur L et al (2009) A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew Chem Int Ed 48(50):9489–9492. doi: 10.1002/anie.200903199 CrossRefGoogle Scholar
  68. 68.
    Guo Y-N, Xu G-F, Gamez P et al (2010) Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. J Am Chem Soc 132(25):8538–8539. doi: 10.1021/ja103018m CrossRefGoogle Scholar
  69. 69.
    Hewitt IJ, Tang J, Madhu NT et al (2010) Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew Chem Int Ed 49(36):6352–6356. doi: 10.1002/anie.201002691 CrossRefGoogle Scholar
  70. 70.
    Blagg RJ, Muryn CA, McInnes EJL et al (2011) Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew Chem Int Ed 50(29):6530–6533. doi: 10.1002/anie.201101932 CrossRefGoogle Scholar
  71. 71.
    Rinehart JD, Fang M, Evans WJ et al (2011) Strong exchange and magnetic blocking in N2 3−-radical-bridged lanthanide complexes. Nat Chem 3(7):538–542. doi: 10.1038/nchem.1063 CrossRefGoogle Scholar
  72. 72.
    Demir S, Zadrozny JM, Nippe M et al (2012) Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. J Am Chem Soc 134(45):18546–18549. doi: 10.1021/ja308945d CrossRefGoogle Scholar
  73. 73.
    Tuna F, Smith CA, Bodensteiner M et al (2012) A high anisotropy barrier in a sulfur-bridged organodysprosium single-molecule magnet. Angew Chem Int Ed 51(28):6976–6980. doi: 10.1002/anie.201202497 CrossRefGoogle Scholar
  74. 74.
    Blagg RJ, Ungur L, Tuna F et al (2013) Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat Chem 5(8):673–678. doi: 10.1038/nchem.1707 CrossRefGoogle Scholar
  75. 75.
    Ungur L, Le Roy JJ, Korobkov I et al (2014) fine-tuning the local symmetry to attain record blocking temperature and magnetic remanence in a single-ion magnet. Angew Chem Int Ed 53(17):4413–4417. doi: 10.1002/anie.201310451 CrossRefGoogle Scholar
  76. 76.
    Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13(45):20086–20090. doi: 10.1039/C1CP22689D CrossRefGoogle Scholar
  77. 77.
    Haase W, Wróbel S (2003) Relaxation phenomena. Springer, GermanyCrossRefGoogle Scholar
  78. 78.
    Casimir HBG, du Pré FK (1938) Note on the thermodynamic interpretation of paramagnetic relaxation phenomena. Physica 5(6):507–511. doi: 10.1016/S0031-8914(38)80164-6 CrossRefADSGoogle Scholar
  79. 79.
    Guo Y-N, Xu G-F, Guo Y et al (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40(39):9953–9963. doi: 10.1039/C1DT10474H CrossRefGoogle Scholar
  80. 80.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351. doi: 10.1063/1.1750906 CrossRefADSGoogle Scholar
  81. 81.
    Dekker C, Arts AFM, de Wijn HW et al (1989) Activated dynamics in a two-dimensional Ising spin glass: Rb2Cu1-xCoxF4. Phys Rev B 40(16):11243–11251. doi: 10.1103/PhysRevB.40.11243 CrossRefADSGoogle Scholar
  82. 82.
    Van Vleck JH (1940) Paramagnetic relaxation times for titanium and chrome alum. Phys Rev 57(5):426–447. doi: 10.1103/PhysRev.57.426 CrossRefADSGoogle Scholar
  83. 83.
    Shrivastava KN (1983) Theory of spin–lattice relaxation. Phys Stat Sol (b) 117(2):437–458. doi: 10.1002/pssb.2221170202
  84. 84.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, OxfordGoogle Scholar
  85. 85.
    Waller I, Zeits F (1932) Physik 79:370Google Scholar
  86. 86.
    de Kronig RL (1939) On the mechanism of paramagnetic relaxation. Physica 6(1):33–43. doi: 10.1016/S0031-8914(39)90282-X
  87. 87.
    Finn CBP, Orbach R, Wolf WP (1961) Spin-lattice relaxation in cerium magnesium nitrate at liquid helium temperature: a new process. Proc Phys Soc 77:261–268. doi: 10.1088/0370-1328/77/2/305 CrossRefADSGoogle Scholar
  88. 88.
    Carlin RL (1986) Magnetochemistry. Springer, BerlinCrossRefGoogle Scholar
  89. 89.
    Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44(19):2931–2935. doi: 10.1002/anie.200462638 CrossRefGoogle Scholar
  90. 90.
    Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42(3):268–297. doi: 10.1002/anie.200390099 CrossRefGoogle Scholar
  91. 91.
    Cucinotta G, Perfetti M, Luzon J et al (2012) Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. Angew Chem Int Ed 51(7):1606–1610. doi: 10.1002/anie.201107453 CrossRefGoogle Scholar
  92. 92.
    Boulon M-E, Cucinotta G, Luzon J et al (2013) Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew Chem Int Ed 52(1):350–354. doi: 10.1002/anie.201205938 CrossRefGoogle Scholar
  93. 93.
    Habib F, Lin P-H, Long J et al (2011) The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet. J Am Chem Soc 133(23):8830–8833. doi: 10.1021/ja2017009 CrossRefGoogle Scholar
  94. 94.
    Luzon J, Bernot K, Hewitt IJ et al (2008) Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear ising model. Phys Rev Lett 100(24):247205. doi: 10.1103/PhysRevLett.100.247205 CrossRefADSGoogle Scholar
  95. 95.
    Salman Z, Giblin SR, Lan Y et al (2010) Probing the magnetic ground state of the molecular dysprosium triangle with muon spin relaxation. Phys Rev B 82(17):174427. doi: 10.1103/PhysRevB.82.174427 CrossRefADSGoogle Scholar
  96. 96.
    Bernot K, Luzon J, Bogani L et al (2009) Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation. J Am Chem Soc 131(15):5573–5579. doi: 10.1021/ja8100038 CrossRefGoogle Scholar
  97. 97.
    Chibotaru LF, Ungur L (2012) Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation. J Chem Phys 137(6):064112–064122. doi: 10.1063/1.4739763 CrossRefADSGoogle Scholar
  98. 98.
    Figgis BN, Gerloch M, Mason R (1964) The paramagnetic anisotropies and ligand fields of the tetrahedral cobaltous chlorides and thiocyanate. Proc R Soc Lond A 279(1377):210–228. doi: 10.1098/rspa.1964.0099 CrossRefADSGoogle Scholar
  99. 99.
    Gregson AK, Mitra S (1968) Magnetic susceptibility, anisotropy, and ESR studies on some copper dialkyldithiocarbamates. J Chem Phys 49(8):3696–3703. doi: 10.1063/1.1670654 CrossRefADSGoogle Scholar
  100. 100.
    Jiang S-D, Wang B-W, Gao S (2014) Advances in lanthanide single-ion magnets. In: Structure and bonding. Springer, Berlin, pp 1–31. doi: 10.1007/430_2014_153
  101. 101.
    Boulon M-E, Cucinotta G, Liu S-S et al (2013) Angular-resolved magnetometry beyond triclinic crystals: out-of-equilibrium studies of Cp*ErCOT single-molecule magnet. Chem Eur J 19(41):13726–13731. doi: 10.1002/chem.201302600 CrossRefGoogle Scholar
  102. 102.
    Layfield RA, McDouall JJW, Sulway SA et al (2010) Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet. Chem Eur J 16(15):4442–4446. doi: 10.1002/chem.201000158 CrossRefGoogle Scholar
  103. 103.
    Long J, Habib F, Lin P-H et al (2011) Single-molecule magnet behavior for an antiferromagnetically superexchange-coupled dinuclear dysprosium(III) complex. J Am Chem Soc 133(14):5319–5328. doi: 10.1021/ja109706y CrossRefGoogle Scholar
  104. 104.
    Griffith JS (1963) Spin Hamiltonian for even-electron systems having even multiplicity. Phys Rev 132(1):316–319. doi: 10.1103/PhysRev.132.316 CrossRefADSMathSciNetGoogle Scholar
  105. 105.
    Ungur L, Thewissen M, Costes J-P et al (2013) Interplay of strongly anisotropic metal ions in magnetic blocking of complexes. Inorg Chem 52(11):6328–6337. doi: 10.1021/ic302568x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina

Personalised recommendations