Advertisement

Life Cycle Costs of Metal Roof, Concrete Tile Roof and the Intelligent Cooling Roof

  • Min WuEmail author
  • Guangwei Chen
  • Peter Davis
  • Willy Sher
  • John Smolders
  • Shuo Chen
  • Zhidan Qin
  • Zhou Yan
  • Ying Wang
Conference paper

Abstract

This study introduces the principle of an intelligent cooling and compares the life cycle costs of a concrete cooling roof, a metal cooling roof and the intelligent cooling roof. We conclude that the intelligent cooling roof is more cost effective than both the concrete cooling roof and the metal cooling roof. The intelligent cooling roof is friendly in installation and effective in producing cooling in summer without consuming any electricity, potentially it could be the next generation of roof for houses in Australia and many other countries.

Keywords

Solar cooling Air-conditioning Solar energy Life cycle costing 

Notes

Acknowledgments

The study is supported by funding from the Centre for Intelligent Electricity Networks (CIEN) at the University of Newcastle, Australia, as well as the National Natural Science Foundation of China 51278512.

References

  1. Burt CC (2011) The world’s hottest recorded air temperatures. Weatherwise 64:26–33. doi: 10.1080/00431672.2011.551594 CrossRefGoogle Scholar
  2. Baniyounes AM, Rasul MG, Khan MMK (2013) Assessment of solar assisted air conditioning in Central Queensland’s subtropical climate, Australia. Renew Energy 50:334–341. doi: 10.1016/j.renene.2012.06.042 CrossRefGoogle Scholar
  3. Parker DS, Barkaszi SF Jr (1997) Roof solar reflectance and cooling energy use: field research results from Florida. Energy Build 25:105–115. doi: 10.1016/S0378-7788(96)01000-6 CrossRefGoogle Scholar
  4. Hanif M, Mahlia TMI, Zare A, Saksahdan TJ, Metselaar HSC (2014) Potential energy savings by radiative cooling system for a building in tropical climate. Renew Sustain Energy Rev 32:642–650. doi: 10.1016/j.rser.2014.01.053 CrossRefGoogle Scholar
  5. Juanicó LE (2010) New design of solar roof for household heating and cooling. Int J Hydrog Energy 35:5823–5826. doi: 10.1016/j.ijhydene.2010.02.092 CrossRefGoogle Scholar
  6. Synnefa A, Santamouris M, Livada I (2006) A study of the thermal performance of reflective coatings for the urban environment. Sol Energy 80:968–981. doi: 10.1016/j.solener.2005.08.005 CrossRefGoogle Scholar
  7. Berdahl P, Bretz SE (1997) Preliminary survey of the solar reflectance of cool roofing materials. Energy Build 25:149–158. doi: 10.1016/S0378-7788(96)01004-3 CrossRefGoogle Scholar
  8. Uemoto KL, Sato NMN, John VM (2010) Estimating thermal performance of cool colored paints. Energy Build 42:17–22. doi: 10.1016/j.enbuild.2009.07.026 CrossRefGoogle Scholar
  9. Synnefa A, Santamouris M, Apostolakis K (2007) On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy 81:488–497. doi: 10.1016/j.solener.2006.08.005 CrossRefGoogle Scholar
  10. Jia MQ, Jin YH (2011) Performance of thermal insulation reflective composite coatings. Advanced Materials Research 239:1771–1774CrossRefGoogle Scholar
  11. Smith GB, Gentle A, Swift PD, Earp A, Mronga N (2003) Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experiments. Sol Energy Mater Sol Cells 79:179–197. doi: 10.1016/S0927-0248(02)00410-5 CrossRefGoogle Scholar
  12. Ma‡ Y, Zhu B, Wu K (2001) Preparation and solar reflectance spectra of chameleon-type building coatings. Sol Energy 70:417–422. doi: 10.1016/S0038-092X(00)00160-2
  13. Maneewan S, Khedari J, Zeghmati B, Hirunlabh J, Eakburanawat J (2004) Investigation on generated power of thermoelectric roof solar collector. Renew Energy 29:743–752. doi: 10.1016/j.renene.2003.10.005 CrossRefGoogle Scholar
  14. CSIRO (2010) Commonwealth Scientific and Industrial Research Organisation, Solar power: energy from the sun. Available from: http://www.csiro.au/Outcomes/Energy/Renewables-and-Smart-Systems/solar-power.aspx. Accessed 31 May 12
  15. Bahadori A, Nwaoha C (2013) A review on solar energy utilisation in Australia. Renew Sustain Energy Rev 18:1–5. doi: 10.1016/j.rser.2012.10.003 CrossRefGoogle Scholar
  16. Residential Metal Roofing Resources, Metal Roofing Alliance, Metal Roofing Information, Met Roof Alliance (n.d.). http://www.metalroofing.com/v2/content/metal-roofing/index.cfm?. Accessed 30 Sept 2014
  17. Fasfous A, Asfar J, Al-Salaymeh A, Sakhrieh A, Al_hamamre Z, Al-bawwab A et al (2013) Potential of utilizing solar cooling in The University of Jordan. Energy Convers Manag 65:729–735. doi: 10.1016/j.enconman.2012.01.045
  18. Fong KF, Chow TT, Lee CK, Lin Z, Chan LS (2010) Comparative study of different solar cooling systems for buildings in subtropical city. Sol Energy 84:227–244. doi: 10.1016/j.solener.2009.11.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Min Wu
    • 1
    Email author
  • Guangwei Chen
    • 2
  • Peter Davis
    • 1
  • Willy Sher
    • 1
  • John Smolders
    • 1
  • Shuo Chen
    • 3
  • Zhidan Qin
    • 4
  • Zhou Yan
    • 5
  • Ying Wang
    • 6
  1. 1.The University of NewcastleCallaghanAustralia
  2. 2.Qiannan Normal College for NationalitiesDuyunChina
  3. 3.Beijing University of Posts and TelecommunicationsHaidianChina
  4. 4.Chongqing Vocational College of TransportationChongqingChina
  5. 5.Chongqing Jiaotong UniversityChongqingChina
  6. 6.Ultimate Online Network Technology LtdShanghaiChina

Personalised recommendations