Advertisement

Positive Formulas in Intuitionistic and Minimal Logic

  • Dick de Jongh
  • Zhiguang Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8984)

Abstract

In this article we investigate the positive, i.e. \(\lnot ,\bot \)-free formulas of intuitionistic propositional and predicate logic, IPC and IQC, and minimal logic, MPC and MQC. For each formula \(\varphi \) of IQC we define the positive formula \(\varphi ^+\) that represents the positive content of \(\varphi \). The formulas \(\varphi \) and \(\varphi ^+\) exhibit the same behavior on top models, models with a largest world that makes all atomic sentences true. We characterize the positive formulas of IPC and IQC as the formulas that are immune to the operation of turning a model into a top model. With the +-operation on formulas we show, using the uniform interpolation theorem for IPC, that both the positive fragment of IPC and MPC respect a revised version of uniform interpolation. In propositional logic the well-known theorem that KC is conservative over the positive fragment of IPC is shown to generalize to many logics with positive axioms. In first-order logic, we show that IQC + DNS (double negation shift) + KC is conservative over the positive fragment of IQC and similar results as for IPC.

Keywords

Intuitionistic logic Minimal logic Jankov’s logic Intermediate logics Positive formulas Interpolation Conservativity 

Notes

Acknowledgement

We thank Albert Visser, Nick Bezhanishvili, Rosalie Iemhoff, Grisha Mints and Anne Troelstra for informative discussions on the subject. We thank the referees for their corrections and Linde Frölke for her preparatory work.

References

  1. 1.
    Brouwer, L.E.J.: Essentieel negatieve eigenschappen. Indag. Math. 10, 322–323 (1948)Google Scholar
  2. 2.
    Chagrov, A.V., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides. Clarendon Press, Oxford (1997)zbMATHGoogle Scholar
  3. 3.
    de Jongh, D., Yang, F.: Jankov’s theorems for intermediate logics in the setting of universal models. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009. LNCS, vol. 6618, pp. 53–76. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Diego, A.: Sur les Algèbres de Hilbert, vol. 21. E. Nauwelaerts, Gauthier-Villars, Louvain (1966) zbMATHGoogle Scholar
  5. 5.
    Enderton, H.B.: A Mathematical Introduction to Logic. Harcourt/Academic Press, Burlington (2001)zbMATHGoogle Scholar
  6. 6.
    Gabbay, D.M., de Jongh, D.H.J.: A sequence of decidable finitely axiomatizable: intermediate logics with the disjunction property. J. Symbolic Logic 39(1), 67–78 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gabbay, D.M., Shehtman, V., Skvortsov, D.: Quantification in Nonclassical Logic I. Studies in Logic and the Foundations of Mathematics. Clarendon Press, Oxford (2009) zbMATHGoogle Scholar
  8. 8.
    Ghilardi, S., Zawadowski, M.W.: Undefinability of propositional quantifiers in the modal system S4. Stud. Logica. 55(2), 259–271 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Griss, G.F.C.: Negationless intuitionistic mathematics I. Indag. Math. 8, 675–681 (1946)Google Scholar
  10. 10.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik, pp. 42–56 (1930)Google Scholar
  11. 11.
    Jankov, V.A.: Calculus of the weak law of the excluded middle (in russian). Izv. Akad. Nauk SSSR Ser. Mat. 32(5), 1044–1051 (1968)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Johansson, I.: Der Minimalkalkül Ein Reduzierter Intuitionistischer Formalismus. Compos. Math. 4, 119–136 (1937)Google Scholar
  13. 13.
    Kolmogorov, A.: Zur Deutung der intuitionistischen Logik. Math. Z. 35(1), 58–65 (1932)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Pitts, A.M.: On an interpretation of second order quantification in first order intuitionistic propositional logic. J. Symb. Logic 57, 33–52 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Renardel de Lavalette, G.R., Hendriks, A., de Jongh, D.: Intuitionistic implication without disjunction. J. Log. Comput. 22(3), 375–404 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Troelstra, A., van Dalen, D.: Constructivism in Mathematics, vols. 2. North-Holland, Amsterdam (1988)Google Scholar
  17. 17.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000) CrossRefzbMATHGoogle Scholar
  18. 18.
    Tzimoulis, A., Zhao, Z.: The Universal Model for the Negation-free Fragment of IPC. Technical Notes (X) Series X-2013-01, ILLC, University of Amsterdam (2013)Google Scholar
  19. 19.
    van Dalen, D.: Logic and Structure. Universitext. Springer, London (2012) Google Scholar
  20. 20.
    Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.) Proceedings of Gödel 1996: Logical Foundations of Mathematics, Computer Science and Physics - Kurt Gödel’s Legacy, Brno, Czech Republic. Lecture Notes Logic, vol. 6, pp. 139–164. Springer Verlag, Berlin (1996)Google Scholar
  21. 21.
    Zhao, Z.: An Investigation of Jankov’s Logic (2012) (Unpublished paper)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ILLCUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations