Advertisement

The Study of Multidimensional R-Tree-Based Index Scalability in Multicore Environment

  • Kirill Smirnov
  • George Chernishev
  • Pavel Fedotovsky
  • George Erokhin
  • Kirill Cherednik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8974)

Abstract

In this paper we consider the scalability issues of a classical data structure used for multidimensional indexing: the R-Tree. This data structure allows for an efficient retrieval of records in low-dimensional spaces and is de facto standard of the industry. Following the design guidelines of the GiST model we have implemented a prototype which supports concurrent (parallel) access and provides read committed isolation level. Using our prototype we study the impact of threads and cores on the performance of the system. In order to do this, we evaluate it in several scenarios which may occur during the course of DBMS operation.

Keywords

Threads Scalability Databases Multidimensional indexing In-memory index R-Tree GiST Experimental evaluation 

Notes

Acknowledgements

We would like to thank organizers of ACM SIGMOD Programming Contest’12 for providing a base for benchmark, data generator and unit tests. This work is partially supported by Russian Foundation for Basic Research grant 12-07-31050.

References

  1. 1.
    Beckmann, N., Seeger, B.: A revised R*-tree in comparison with related index structures. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, SIGMOD 2009, New York, NY, USA, pp. 799–812. ACM (2009)Google Scholar
  2. 2.
    Kornacker, M., Mohan, C., Hellerstein, J.M.: Concurrency and recovery in generalized search trees. SIGMOD Rec. 26(2), 62–72 (1997)CrossRefGoogle Scholar
  3. 3.
    Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems. In: Proceedings of the 21th International Conference on Very Large Data Bases, VLDB 1995, San Francisco, CA, USA, pp. 562–573. Morgan Kaufmann Publishers Inc. (1995)Google Scholar
  4. 4.
    Smirnov, K., Chernishev, G., Fedotovsky, P., Erokhin, G., Cherednik, K.: R-tree re-evaluation effort: a report. Technical report (2014) http://www.math.spbu.ru/user/chernishev/papers/r-tree-scalability2014.pdf
  5. 5.
    Papadopoulos, A.N., Corral, A., Nanopoulos, A., Theodoridis, Y.: R-Tree (and Family). In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2453–2459. Springer, New York (2009). doi: 10.1007/978-0-387-39940-9_300 Google Scholar
  6. 6.
    Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The end of an architectural era: (it’s time for a complete rewrite). In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB 2007, pp. 1150–1160. VLDB Endowment (2007)Google Scholar
  7. 7.
    Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: Oltp through the looking glass, and what we found there. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, New York, NY, USA, pp. 981–992. ACM (2008)Google Scholar
  8. 8.
    Achtert, E., Goldhofer, S., Kriegel, H.P., Schubert, E., Zimek, A.: Evaluation of clusterings - metrics and visual support. In: Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, ICDE 2012, Washington, DC, USA, pp. 1285–1288. IEEE Computer Society (2012)Google Scholar
  9. 9.
    Kornacker, M., Shah, M., Hellerstein, J.M.: AMDB: an access method debugging tool. SIGMOD Rec. 27(2), 570–571 (1998)CrossRefGoogle Scholar
  10. 10.
    Arge, L., Procopiuc, O., Vitter, J.S.: Implementing i/o-efficient data structures using TPIE. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 88–100. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  11. 11.
    ACM SIGMOD Programming Contest 2012. http://wwwdb.inf.tu-dresden.de/sigmod2012contest/. Accessed: 9th November 2012
  12. 12.
    Chernishev, G., Smirnov, K., Fedotovsky, P., Erokhin, G., Cherednik, K.: To sort or not to sort: the evaluation of R-tree and \({B}^+\)-tree in transactional environment with ordered result set requirement. In: SYRCoDIS, pp. 27–34 (2013)Google Scholar
  13. 13.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)CrossRefGoogle Scholar
  14. 14.
    Taniar, D., Leung, C.H.C., Rahayu, W., Goel, S.: High Performance Parallel Database Processing And Grid Databases. Wiley Publishing, New York (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kirill Smirnov
    • 1
  • George Chernishev
    • 1
  • Pavel Fedotovsky
    • 1
  • George Erokhin
    • 1
  • Kirill Cherednik
    • 1
  1. 1.Saint-Petersburg UniversitySaint PetersburgRussia

Personalised recommendations