Advertisement

FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second

  • Léo DucasEmail author
  • Daniele Micciancio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9056)

Abstract

The main bottleneck affecting the efficiency of all known fully homomorphic encryption (FHE) schemes is Gentry’s bootstrapping procedure, which is required to refresh noisy ciphertexts and keep computing on encrypted data. Bootstrapping in the latest implementation of FHE, the HElib library of Halevi and Shoup (Crypto 2014), requires about six minutes. We present a new method to homomorphically compute simple bit operations, and refresh (bootstrap) the resulting output, which runs on a personal computer in just about half a second. We present a detailed technical analysis of the scheme (based on the worst-case hardness of standard lattice problems) and report on the performance of our prototype implementation.

Keywords

Encryption Scheme Homomorphic Encryption NAND Gate Message Space Ring Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  4. 4.
    Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J., (eds.), 45th ACM STOC, pp. 575–584. ACM Press, June 2013Google Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer Society Press, October 2011Google Scholar
  9. 9.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Ducas, L., Micciancio, D.: Implementation of FHEW (2014). https://github.com/lducas/FHEW
  12. 12.
    Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93(2), 216–231 (2005). Special issue on "Program Generation, Optimization, and Platform Adaptation"CrossRefGoogle Scholar
  14. 14.
    Gentleman, W.M., Sande, G.: Fast fourier transforms: For fun and profit. In: Proceedings of the November 7–10, 1966, Fall Joint Computer Conference, AFIPS 1966 (Fall), pp. 563–578. ACM, New York, NY, USA (1966)Google Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May / June 2009Google Scholar
  16. 16.
    Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 107–109. IEEE Computer Society Press, October 2011Google Scholar
  17. 17.
    Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  18. 18.
    Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 19–37. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  24. 24.
    Halevi, S., Shoup, V.: Bootstrapping for HElib. IACR Cryptology ePrint Archive, (2014). http://eprint.iacr.org/2014/873
  25. 25.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  26. 26.
    Lidl, R., Niederreiter, H.: Finite Fields. Reading, MA: Addison-Wesley. Encyclopedia of Mathematics and its Applications 20 (1983)Google Scholar
  27. 27.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  28. 28.
    Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  30. 30.
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  31. 31.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: 43rd FOCS, pp. 356–365. IEEE Computer Society Press, November 2002Google Scholar
  32. 32.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R., (eds.), 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar
  33. 33.
    Schatzman, J.C.: Accuracy of the discrete fourier transform and the fast fourier transform. SIAM J. Sci. Comput. 17(5), 1150–1166 (1996)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.Centrum Wiskunde and InformaticaAmsterdamNetherlands
  2. 2.University of CaliforniaSan DiegoUSA

Personalised recommendations