Advertisement

The Sum Can Be Weaker Than Each Part

  • Gaëtan LeurentEmail author
  • Lei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9056)

Abstract

In this paper we study the security of summing the outputs of two independent hash functions, in an effort to increase the security of the resulting design, or to hedge against the failure of one of the hash functions. The exclusive-or (XOR) combiner \(H_1(M) \oplus H_2(M)\) is one of the two most classical combiners, together with the concatenation combiner \(H_1(M) \Vert H_2(M)\). While the security of the concatenation of two hash functions is well understood since Joux’s seminal work on multicollisions, the security of the sum of two hash functions has been much less studied. The XOR combiner is well known as a good PRF and MAC combiner, and is used in practice in TLS versions 1.0 and 1.1. In a hash function setting, Hoch and Shamir have shown that if the compression functions are modeled as random oracles, or even weak random oracles (i.e. they can easily be inverted – in particular \(H_1\) and \(H_2\) offer no security), \(H_1 \oplus H_2\) is indifferentiable from a random oracle up to the birthday bound.

In this work, we focus on the preimage resistance of the sum of two narrow-pipe \(n\)-bit hash functions, following the Merkle-Damgård or HAIFA structure (the internal state size and the output size are both \(n\) bits).We show a rather surprising result: the sum of two such hash functions, e.g. SHA-512 \(\oplus \) Whirlpool, can never provide \(n\)-bit security for preimage resistance. More precisely, we present a generic preimage attack with a complexity of \(\tilde{O}(2^{5n/6})\). While it is already known that the XOR combiner is not preserving for preimage resistance (i.e. there might be some instantiations where the hash functions are secure but the sum is not), our result is much stronger: for any narrow-pipe functions, the sum is not preimage resistant.

Besides, we also provide concrete preimage attacks on the XOR combiner (and the concatenation combiner) when one or both of the compression functions are weak; this complements Hoch and Shamir’s proof by showing its tightness for preimage resistance.

Of independent interests, one of our main technical contributions is a novel structure to control simultaneously the behavior of independent hash computations which share the same input message. We hope that breaking the pairwise relationship between their internal states will have applications in related settings.

Keywords

Hash functions Combiners XOR combiner Preimage attack. 

References

  1. 1.
    Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preimage and trojan message attacks beyond merkle-damgård. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. IACR Cryptology ePrint Archive, Report 2007/278 (2007)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 570–583. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990) Google Scholar
  5. 5.
    Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard), obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176, January 1999. http://www.ietf.org/rfc/rfc2246.txt
  6. 6.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), updated by RFCs 5746, 5878, 6176, August 2008. http://www.ietf.org/rfc/rfc5246.txt
  7. 7.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  8. 8.
    Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions revisited. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 655–666. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Fischlin, M., Lehmann, A., Pietrzak, K.: Robust Multi-Property Combiners for Hash Functions. J. Cryptology 27(3), 397–428 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Version 3.0. RFC 6101 (Historic), August 2011. http://www.ietf.org/rfc/rfc6101.txt
  12. 12.
    Her, Y.S., Sakurai, K.: A Design of Cryptographic Hash Function Group with Variable Output-Length Based on SHA-1. Technical report of IEICE. ISEC 102(212), pp. 69–76, July 2002. http://ci.nii.ac.jp/naid/110003298501/en/
  13. 13.
    Hoch, J.J., Shamir, A.: Breaking the ICE - finding multicollisions in iterated concatenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the hash functions are weak. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Hong, D., Chang, D., Sung, J., Lee, S.-J., Hong, S.H., Lee, J.S., Moon, D., Chee, S.: A new dedicated 256-bit hash function: FORK-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Indesteege, S.: The lane hash function. Submission to NIST (2008). http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
  17. 17.
    Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  19. 19.
    Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2\(^{n}\) work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Lehmann, A.: On the Security of Hash Function Combiners. Ph.D. thesis, TU Darmstadt (2010)Google Scholar
  21. 21.
    Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential attacks on reduced RIPEMD-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 23–38. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  23. 23.
    Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 484–503. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the collision resistance of RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  25. 25.
    Mendel, F., Rechberger, C., Schläffer, M.: MD5 is weaker than weak: Attacks on concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 144–161. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  26. 26.
    Mennink, B., Preneel, B.: Breaking and fixing cryptophia’s short combiner. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 50–63. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  27. 27.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990) Google Scholar
  28. 28.
    Mittelbach, A.: Hash combiners for second pre-image resistance, target collision resistance and pre-image resistance have long output. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 522–539. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  29. 29.
    Mittelbach, A.: Cryptophia’s short combiner for collision-resistant hash functions. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 136–153. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Nandi, M., Stinson, D.R.: Multicollision Attacks on Some Generalized Sequential Hash Functions. IEEE Transactions on Information Theory 53(2), 759–767 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Park, N.K., Hwang, J.H., Lee, P.J.: HAS-V: A new hash function with variable output length. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 202–216. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  32. 32.
    Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  33. 33.
    Rjasko, M.: On existence of robust combiners for cryptographic hash functions. In: Vojtás, P. (ed.) ITAT. CEUR Workshop Proceedings, vol. 584, pp. 71–76. CEUR-WS.org (2009)Google Scholar
  34. 34.
    Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the ripemd-128/-160 compression functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 275–292. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  35. 35.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  36. 36.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  37. 37.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.InriaParisFrance
  2. 2.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations