Advertisement

Phoniatrics I pp 349-430 | Cite as

Diagnosis and Differential Diagnosis of Voice Disorders

  • Wolfgang AngersteinEmail author
  • Giovanna Baracca
  • Philippe Dejonckere
  • Matthias Echternach
  • Ulrich Eysholdt
  • Franco Fussi
  • Ahmed Geneid
  • Tamás Hacki
  • Katarzyna Karmelita-Katulska
  • Renate Haubrich
  • František Šram
  • Jan G. švec
  • Jitka Vydrová
  • Bożena Wiskirska-Woźnica
Chapter
Part of the European Manual of Medicine book series (EUROMANUAL)

Abstract

Basic information for diagnosis and differential diagnosis of voice disorders is drawn from medical history (the nature of the change in the sound of the voice, pitch, extent and loudness of voice, frequently reported hoarseness and its severity, any occurrence of episodes of voice loss, fatigability of voice) and auditory evaluation (mean speaking pitch, voice onset, pitch range, capability of increasing loudness, perceptual scale of the sound of the voice including nasality, stability). Self-administered questionnaires have proven to be important instruments for the evaluation of the impact of a voice problem on the quality of life of patients. Objective data are available from acoustic analyses (phonetography [voice range profile], visible speech [spectrography], quantification of Fo, voicing %, perturbation parameters, harmonics-to-noise ratio, etc.) and from aerodynamic measurements (maximum phonation time, body plethysmography). In addition to the classic assessment of the laryngeal structures by means of laryngoscopy, stroboscopy is a widely used standard as a subjective tool for the visualisation of vocal fold vibration. Among objective approaches, videokymography is increasingly being used, and high-speed video with consecutive vibrogram display and electroglottography are other options. Vibrational analyses are particularly useful for the detection of beginning malignomas and hidden lesions. They may be also helpful for the evaluation of the vibrating lips within the practice of musician’s medicine for assessing the occupational (in)capacity of professional brass musicians. Electromyography (EMG) is indicated for vocal fold immobility of unknown origin to distinguish paralysis from mechanical fixation. Ultrasound sonography may concern spoken articulation as well as phonation. Proposals for voice loading tests, because of the complexity of the issue, need further improvement and standardisation.

Keywords

Diagnostics Auditory assessment Acoustic analyses Aerodynamic measures Laryngoscopy Stroboscopy Videokymography High-speed video Vibrogram Electroglottography Electromyography Sonography Loading tests Brass musicians 

Supplementary material

Video 6.1

Tips and tricks for laryngeal examination. Video performed by: Tiina Pakka, Annika Laaksonen and Ahmed Geneid (MP4 115356 kb)

307062_1_En_6_MOESM2_ESM.wmv (14.2 mb)
Video 6.2 Stroboscopy of the lips: crescendo-decrescendo, French horn. Regular vibratory pattern of the lips (WMV 14521 kb)
Video 6.3

Stroboscopy of the lips: musical scale, trumpet. Regular vibratory pattern of the lips (MP4 11202 kb)

Case Study Video 6.4

Stroboscopy of the lips: flugelhorn player with stenosis of the spinal canal between C2 AND C5 (MP4 21016 kb)

Video 6.4

Stroboscopy of the lips: single tones played with the trombone. The regular vibratory pattern of the lips is similar to the vocal fold vibration. The mucosa in the centre of the upper lip initiates the closure as a result of the Bernoulli effect (MP4 13012 kb)

Video 6.5

Sonography of the lips: transversal b-mode scans of the upper lip. Orbicularis oris muscle visible as narrow black band (MP4 3231 kb)

Video 6.6

Sonography of the lips: sagittal B-mode scans of the lips (upper lip left, lower lip right, cavum oris in between). Typical ‘hockey stick’ shape of the orbicularis oris muscle, visible as black band within the lip (MP4 4559 kb)

Video 6.7

Kymography (high-speed line scanning) of the lips: broken chords, French horn (upper lip right, lower lip left) (MP4 13779 kb)

Video 6.8

Kymography (high-speed line scanning) of the lips: sound of tuba played at Gflat0 (23 Hz). Because of this low frequency, the tone is hardly audible. The real-time video kymogram shows approximately one vibrational cycle per image. Solely the upper lip is visible from the right (MP4 4276 kb)

Video 6.9

Sonography of the tongue: mediosagittal scans (left) and simultaneous TM-mode scans (right) while playing the soprano recorder (MP4 6203 kb)

Video 6.10

Sonography of the tongue: mediosagittal scans (left) and simultaneous TM-mode scans (right) during trumpet playing (MP4 4531 kb)

References

  1. Alku P (2011) Glottal inverse filtering analysis of human voice production—a review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana 36(5):623–650. https://www.ias.ac.in/article/fulltext/sadh/036/05/0623-0650. Accessed 14 April 2019CrossRefGoogle Scholar
  2. Altenmüller E, Jabusch HC (2006a) Neurologische Erkrankungen bei Musikern. Med Welt 57:569–575Google Scholar
  3. Altenmüller E, Jabusch HC (2006b) Focal dystonia in musicians: from phenomenology to therapy. Adv Cogn Psychol 2(2–3):207–220Google Scholar
  4. Altenmüller E, Jabusch HC (2008) Apollos Fluch—Musikerdystonien. InFo Neurologie & Psychiatrie 5:46–53Google Scholar
  5. Angerstein W, Klajman S, Neuschaefer-Rube C et al (1993a) Badanie sonograficzne szybkości przepływu krwi w zyle szyjnej wewnetrznej w hyperfunkcjonalnej dysfonii dzieciecej. (Sonographic imaging of internal jugular venous blood flow in juvenile hyperfunctional dysphonia). Otolaryngol Pol 47(3):264–269PubMedPubMedCentralGoogle Scholar
  6. Angerstein W, Wein B, Klajman S (1993b) Duplexsonographie der V. jugularis interna bei hyperfunktioneller Dysphonie. Sprache-Stimme-Gehör 17(1):31–34Google Scholar
  7. Arcier AF, Vernay A (1994) Observation clinique: lésions musculaires labiales liées au jeu de cuivres. Médecine des Arts 8:14–19Google Scholar
  8. Aronson A, Bless D (2009) Clinical voice disorders. Thieme, New YorkGoogle Scholar
  9. Arruti A, Poumayrac M (2010) Ecografia laringea: una técnica alternativa en la valoración de la encrucijada aero-digestiva. Rev Imagenol 14(1):30–36Google Scholar
  10. Awan SN, Roy N, Zhang D et al (2016) Validation of the Cepstral Spectral Index of Dysphonia (CSID) as a screening tool for voice disorders: development of clinical cutoff scores. J Voice 30(2):130–144PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baer T, Gore JC, Gracco LC et al (1991) Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels. J Acoust Soc Am 90(2):799–828PubMedCrossRefPubMedCentralGoogle Scholar
  12. Baken RJ, Orlikoff R (2000) Clinical measurement of speech and voice. Singular Thomson Learning, San DiegoGoogle Scholar
  13. Bassich C, Ludlow C (1986) The use of perceptual methods for assessing voice quality. J Speech Hear Disord 51(2):125–133PubMedCrossRefPubMedCentralGoogle Scholar
  14. Baum U, Greess H, Lell M et al (2000) Imaging of head and neck tumors—methods-CT, spiral-CT, multislice-spiral-CT. Eur J Radiol 33(3):153–160PubMedCrossRefPubMedCentralGoogle Scholar
  15. Beach JL, Kelsey CA (1969) Ultrasonic Doppler monitoring of vocal-fold velocity and displacement. J Acoust Soc Am 46(4b):1045–1047PubMedCrossRefPubMedCentralGoogle Scholar
  16. Beukers R, Bierens E, Kingma H et al (1995) Voice load as measured by the voice accumulator. Folia Phoniatr Logop 47(5):252–261CrossRefGoogle Scholar
  17. Bless DM, Baken RJ (1992) Assessment of voice. J Voice 6(2):95–97CrossRefGoogle Scholar
  18. Blitzer A (1995) Laryngeal electromyography. ln: Rubin JS et al (eds) Diagnosis and treatment of voice disorders. Igaku-Shoin, New York, pp 316–326Google Scholar
  19. BMA (Ärztl. Sachverständigenrat beim Bundesministerium für Arbeit u. Sozialordnung) (2002) Druckschädigung der Nerven. Merkblatt zur Berufskrankheit Nr. 2106 der Anlage zur Berufskrankheitenverordnung (BKV): Bundesarbeitsblatt 11(62)Google Scholar
  20. Böckelmann I, Schneyer B (2009) Arbeitsbedingte Belastungen und Erkrankungen von Musikern. Arbeitsmed Sozialmed Umweltmed 4:237–242Google Scholar
  21. Böckler R, Wein B, Klajman S et al (1988) Die Ultraschalluntersuchung der Pseudoglottis bei Kehlkopflosen. HNO 36(3):115–118PubMedPubMedCentralGoogle Scholar
  22. Böhme G (1988a) Echolaryngographie—Ein Beitrag zur Methode der Ultraschalldiagnostik des Kehlkopfes. Laryngol Rhinol Otol 67(11):551–558CrossRefGoogle Scholar
  23. Böhme G (1988b) Ultraschalldiagnostik der phonatorischen Leistungen des Laryngektomierten. Laryngol Rhinol Otol 67(12):651–656CrossRefGoogle Scholar
  24. Böhme G (1989) Ein klinischer Beitrag zur Ultraschalldiagnostik des Kehlkopfes (Echolaryngographie). Laryngol Rhinol Otol 68(9):510–515CrossRefGoogle Scholar
  25. Böhme G (1991) Duplexsonographie des Kehlkopfes: 1. Bewegungsanalyse intralaryngealer Strukturen. Otorhinolaryngol Nova 1(6):338–342Google Scholar
  26. Böhme G (1992) Duplexsonographie des Kehlkopfes: 2. Farbkodierte Bewegungsanalyse intralaryngealer Strukturen. Otorhinolaryngol Nova 2(1):43–45CrossRefGoogle Scholar
  27. Böhme G, Gross M (2001) Stroboskopie und andere Verfahren zur Analyse der Stimmlippenschwingungen. Median, HeidelbergGoogle Scholar
  28. Boone D (1993) The Boone voice program for children, 2nd edn. Pro-Ed, Austin, TXGoogle Scholar
  29. Boone DR, McFarlane SC, Von Berg SL (2005) The voice and voice therapy, 7th edn. Allyn & Bacon, Boston, MAGoogle Scholar
  30. Borch DZ, Sundberg J, Lindestad PÅ et al (2004) Vocal fold vibration and voice source aperiodicity in ‘dist’ tones: a study of a timbral ornament in rock singing. Logoped Phoniatr Vocol 29(4):147–153PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bordone-Sacerdote C, Sacerdote G (1965) Investigations on the movement of the glottis by ultrasounds. Paper presented at the 5th International Congress on Audiology, Liège, 7–14 Sept 1965, Paper Nr. A 42, p 4Google Scholar
  32. Bough D, Heuer RJ, Sataloff RT et al (1996) Intrasubject variability of objective voice measures. J Voice 10(2):166–174PubMedCrossRefPubMedCentralGoogle Scholar
  33. Boutin H, Fletcher N, Smith J et al (2015) Relationships between pressure, flow, lip motion, and upstream and downstream impedances for the trombone. J Acoust Soc Am 137(3):1195–1209PubMedCrossRefPubMedCentralGoogle Scholar
  34. Bozzato A, Zenk J, Gottwald F et al (2007) Der Einfluss der Schildknorpelossifikation bei der Larynxsonografie. Laryngol Rhinol Otol 86(4):276–281CrossRefGoogle Scholar
  35. Brockmann-Bauser M, Drinnan MJ (2011) Routine acoustic voice analysis: time to think again? Curr Opin Otolaryngol Head Neck Surg 19(3):165–170PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bromage S, Campbell M, Gilbert J (2005) Experimental investigation of the open area of the brass player’s vibrating lips. In: Proceedings of the Forum Acusticum, Budapest, 29 August–2 September 2005. OPAKFI, Budapest, pp 729–734Google Scholar
  37. Bromage S (2007) Visualisation of the lip motion of brass instrument players, and investigations of an artificial mouth as a tool for comparative studies of instruments. PhD thesis, University of Edinburgh, Edinburgh. https://www.era.lib.ed.ac.uk/handle/1842/1966. Accessed 9 Feb 2018
  38. Bromage S, Campbell M, Gilbert J (2010) Open areas of vibrating lips in trombone playing. Acta Acust Acust 96(4):603–613CrossRefGoogle Scholar
  39. Bumiller OE (1936) Antwort zu Frage 25 im “Fragekasten”: Lippenverletzungen durch Blasinstrument. Dtsch Zahnärztl Wschr 39:295Google Scholar
  40. Bum-Soo K, Kook JA, Young HP et al (2008) Usefulness of laryngeal phonation CT in the diagnosis of vocal cord paralysis. Am J Roentgenol 190(5):1376–1379CrossRefGoogle Scholar
  41. Campos FG (2005) Trumpet technique. Oxford University Press, Oxford, p 51Google Scholar
  42. Cantarella G, Iofrida E, Boria P et al (2014) Ambulatory phonation monitoring in a sample of 92 call center operators. J Voice 28(3):393.e1–393.e6.  https://doi.org/10.1016/j.jvoice.2013.10.002 CrossRefGoogle Scholar
  43. Carding PN, Horsley IA (1992) An evaluation of voice therapy in non-organic dysphonia. Eur J Disord Commun 27(2):137–148PubMedCrossRefPubMedCentralGoogle Scholar
  44. Chick J, Bromage S, Campbell M (2005) Transient behaviour in the motion of the brass player’s lips. In: Proceedings of the Forum Acusticum, Budapest, 29 August–2 September 2005. OPAKFI, Budapest, pp 753–775Google Scholar
  45. Cohen SM, Jacobson BH, Garrett CG et al (2007) Creation and validation of the Singing Voice Handicap Index. Ann Otol Rhinol Laryngol 116(6):402–406PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cohen SM, Statham M, Rosen CA et al (2009) Development and validation of the Singing Voice Handicap Index-10. Laryngoscope 119(9):1864–1869PubMedCrossRefPubMedCentralGoogle Scholar
  47. Colton RH, Woo P (1995) Measuring vocal fold function. In: Rubin JS et al (eds) Diagnosis and treatment of voice disorders. Igaku-Shoin, New York, pp 290–315Google Scholar
  48. Colton RH, Casper JK (1996) Understanding voice problems. Williams & Wilkins, BaltimoreGoogle Scholar
  49. Dacakis G, Davies S, Oates JM et al (2013) Development and preliminary evaluation of the transsexual voice questionnaire for male-to-female transsexuals. J Voice 27(3):312–320PubMedCrossRefPubMedCentralGoogle Scholar
  50. Damsté PH (1966) Les vibrations des cordes vocales compares aux vibrations des levres d’un trombonist. J Fr Otorhinolaryngol Chir Maxillofac 4:395–396Google Scholar
  51. De Bodt MS, Van de Heyning PH, Wuyts FL et al (1996) The perceptual evaluation of voice disorders. Acta Otorhinolaryngol Belg 50(4):283–291PubMedPubMedCentralGoogle Scholar
  52. De Bodt MS, Wuyts FL, Van de Heyning PH et al (1997) Test-retest study of the GRBAS scale: influence of experience and professional background on perceptual rating of voice quality. J Voice 11(1):74–80PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dejonckere P (2010) Assessment of voice and respiratory function. In: Remacle M, Eckel HE (eds) Surgery of larynx and trachea, vol 11. Springer-Verlag, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-540-79136-2_2 CrossRefGoogle Scholar
  54. Dejonckere PH (1987) EMG of the larynx. Press Productions, LiègeGoogle Scholar
  55. Dejonckere PH, Knoops P, Lebacq J (1988) Evoked muscular potentials in laryngeal muscles. Acta Otolaryngol Belg 42(4):494–501Google Scholar
  56. Dejonckere PH, Obbens C, de Moor GM et al (1993) Perceptual evaluation of dysphonia: reliability and relevance. Folia Phoniatr 45(2):76–83CrossRefGoogle Scholar
  57. Dejonckere PH, Remacle M, Fresnel-Elbaz E et al (1996) Differentiated perceptual evaluation of pathological voice quality: reliability and correlations with acoustic measurements. Rev Laryngol Otol Rhinol 117(3):219–224Google Scholar
  58. Dejonckere PH (1996) Electroglottography: a useful method in voice investigation. In: Pais-Clemente M (ed) Voice update. Excerpta Medica, Elsevier, Amsterdam, pp 29–33Google Scholar
  59. Dejonckere PH (1998) Effect of louder voicing on acoustical measurements in dysphonic patients. Logoped Phoniatr Vocol 23(2):79–84CrossRefGoogle Scholar
  60. Dejonckere PH (2000) Perceptual and laboratory assessment of dysphonia. Otolaryngol Clin N Am 33(4):731–750CrossRefGoogle Scholar
  61. Dejonckere PH, Crevier L, Elbaz E et al (2000) Clinical implementation of a multidimensional basic protocol for assessing functional results of voice therapy. In: Jahnke K, Fischer M (eds) Proceedings of the 4th EUFOS Congress, Berlin, pp 561–565Google Scholar
  62. Dejonckere PH, Bradley P, Clemente P et al (2001) A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques. Guideline elaborated by the Committee on Phoniatrics of the European Laryngological Society (ELS). Eur Arch Otorhinolaryngol 258(2):77–82CrossRefGoogle Scholar
  63. Dejonckere PH, Lebacq J (2001) Plasticity of voice quality: a prognostic factor for outcome of voice therapy? J Voice 15(2):251–256PubMedCrossRefPubMedCentralGoogle Scholar
  64. Dejonckere PH, van Wijngaarden HA (2001) Retropharyngeal autologous fat transplantation for congenital short palate: a nasometric assessment of functional results. Ann Otol Rhinol Laryngol 110(2):168–172PubMedCrossRefPubMedCentralGoogle Scholar
  65. Dejonckere PH (2006a) Aerodynamic and acoustic voice measurements. In: Benninger MS, Murry T (eds) The performer’s voice. Plural Publishing, San DiegoGoogle Scholar
  66. Dejonckere PH (2006b) Critères acoustiques de fluence pour l’évaluation des dysphonies spasmodiques. Klein-Dallant C (ed) Paris, pp 157–166Google Scholar
  67. Dejonckere PH, Schoentgen J, Giordano A et al (2011) Validity of jitter measures in non-quasi-periodic voices. Part I: Perceptual and computer performances in cycle pattern recognition. The effect of noise. Logoped Phoniatr Vocol 36(2):70–77PubMedCrossRefPubMedCentralGoogle Scholar
  68. Dejonckere PH, Giordano A, Schoentgen J et al (2012a) To what degree of voice perturbation are jitter measurements valid? A novel approach with synthesized vowels and visuo-perceptual pattern recognition. Biomed Signal Process Control 7(1):37–42CrossRefGoogle Scholar
  69. Dejonckere PH, Neumann KJ, Moerman MB et al (2012b) Tridimensional assessment of adductor spasmodic dysphonia pre- and post-treatment with botulinum toxin. Eur Arch Otorhinolaryngol 269(4):1195–2003PubMedCrossRefPubMedCentralGoogle Scholar
  70. Dejonckere PH, Moerman MB, Martens JP et al (2012c) Voicing quantification is more relevant than period perturbation in substitution voices: an advanced acoustical study. Eur Arch Otorhinolaryngol 269(4):1205–1212PubMedPubMedCentralCrossRefGoogle Scholar
  71. De Krom G (1995) Some spectral correlates of pathological breathy and rough voice quality for different types of vowel fragments. J Speech Hear Res 38(4):794–811PubMedCrossRefPubMedCentralGoogle Scholar
  72. Donnet A, Dessi P, Koeppel MC (1996) Le syndrome de Satchmo. Presse Med 25(4):173PubMedPubMedCentralGoogle Scholar
  73. Echternach M, Sundberg J, Baumann T et al (2011) Vocal tract area functions and formant frequencies in opera tenors’ modal and falsetto registers. J Acoust Soc Am 129(6):3955–3963PubMedCrossRefPubMedCentralGoogle Scholar
  74. Echternach M, Markl M, Richter B et al (2012) Dynamic real-time magnetic resonance imaging for the analysis of voice physiology. Curr Opin Otolaryngol Head Neck Surg 20(6):450–457PubMedCrossRefPubMedCentralGoogle Scholar
  75. Echternach M, Richter B, Traser L et al (2013) Veränderung der stimmlichen Leistungsfähigkeit durch verschiedene Stimmbelastungstests. (Change of vocal capacity due to different vocal loading tests). Laryngo-Rhino-Otol 92(1):34–40Google Scholar
  76. Echternach M, Birkholz P, Traser L et al (2015) Articulation and vocal tract acoustics at soprano subject’s high fundamental frequencies. J Acoust Soc Am 137(5):2586–2596CrossRefGoogle Scholar
  77. Epstein R, Hirani SP, Stygall J et al (2009) How do individuals cope with voice disorders? Introducing the Voice Disability Coping Questionnaire. J Voice 23(2):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  78. Eysholdt U, Lohscheller J (2008) Phonovibrogramm: stimmlippendynamik in einem Bild. HNO 56(12):1207–1212PubMedCrossRefPubMedCentralGoogle Scholar
  79. Eysholdt U (2014) Heiserkeit: biomechanik und quantitative laryngoskopie. HNO 62(7):541–552PubMedPubMedCentralCrossRefGoogle Scholar
  80. Fang-Ling L, Matteson S (2014) Speech tasks and interrater reliability in perceptual voice evaluation. J Voice 28(6):725–732CrossRefGoogle Scholar
  81. Flesch J (1925) Berufs-Krankheiten des Musikers. Ein Leitfaden der Berufsberatung für Musiker, Musikpädagogen, Ärzte und Eltern. Kampmann, Celle, pp 82–113Google Scholar
  82. Fourcin A, Abberton E, Miller D et al (1995) Laryngography. Eur J Disord Commun 30:101–115PubMedCrossRefGoogle Scholar
  83. Fourcin A, Abberton E (2008) Hearing and phonetic criteria in voice measurement: clinical applications. Logoped Phoniatr Vocol 33(1):35–48PubMedCrossRefGoogle Scholar
  84. Friedman EM (1997) Role of ultrasound in the assessment of vocal cord function in infants and children. Ann Otol Rhinol Laryngol 106(3):199–209PubMedCrossRefGoogle Scholar
  85. Fritzell B, Hallen O, Sundberg J (1974) Evaluation of Teflon injection procedures for paralytic dysphonia. Folia Phoniatr 26(6):414–421CrossRefGoogle Scholar
  86. Frucht SJ, Fahn S, Greene PE et al (2001) The natural history of embouchure dystonia. Mov Disord 16(5):899–906PubMedCrossRefGoogle Scholar
  87. Frucht SJ (2009) Embouchure dystonia—portrait of a task-specific cranial dystonia. Mov Disord 24(12):1752–1762PubMedCrossRefGoogle Scholar
  88. Fussi F (2005) La voce del cantante, vol III. Omega, TorinoGoogle Scholar
  89. Gall V, Gall D, Hanson J (1971) Larynx-Fotokymografie. Arch klin exp Ohr-, Nas- u Kehlk Heilk 200(1):34–41CrossRefGoogle Scholar
  90. Gall V, Hanson J (1973) Bestimmung physikalischer Parameter der Stimmlippenschwingungen mit Hilfe der Larynxphotokymographie. Folia Phoniatr 25:450–459CrossRefGoogle Scholar
  91. Garel C, Legrand I, Elmaleh M et al (1990) Laryngeal ultrasonography in infants and children: anatomical correlation with fetal preparations. Pediatr Radiol 20(4):241–244PubMedCrossRefPubMedCentralGoogle Scholar
  92. Garel C, Contencin P, Polonovski JM et al (1992) Laryngeal ultrasonography in infants and children: a new way of investigating. Normal and pathological findings. Int J Pediatr Otorhinolaryngol 23(2):107–115PubMedCrossRefPubMedCentralGoogle Scholar
  93. Gelfer MP, Pazera JF (2006) Maximum duration of sustained /s/ and /z/ and the s/z ratio with controlled intensity. J Voice 20(3):369–379PubMedCrossRefPubMedCentralGoogle Scholar
  94. Gerratt B, Kreiman J, Barroso NA et al (1993) Comparing internal and external standards in voice quality judgments. J Speech Hear Res 2(36):14–20CrossRefGoogle Scholar
  95. Ghirardi AC, Ferreira LP, Giannini SP et al (2013) Screening index for voice disorder (SIVD): development and validation. J Voice 27(2):195–200PubMedCrossRefPubMedCentralGoogle Scholar
  96. Godino-Llorente JI, Osma-Ruiz V, Saenz-Lecho N et al (2010) The effectiveness of the glottal to noise excitation ratio for the screening of voice disorders. J Voice 24(1):47–56PubMedCrossRefPubMedCentralGoogle Scholar
  97. Gomaa MA, Hammad MS, Mamdoh H et al (2013) Value of high resolution ultrasonography in assessment of laryngeal lesions. Otolaryngol Pol 67(5):252–256PubMedCrossRefPubMedCentralGoogle Scholar
  98. Gould J, Waugh J, Carding P et al (2012) A new voice rating tool for clinical practice. J Voice 26(4):e163–e170PubMedCrossRefPubMedCentralGoogle Scholar
  99. Gross M (1985) Larynxfotokymographie. Sprache Stimme Gehör 9:112–113Google Scholar
  100. Grunert D, Stier B, Klingebiel T et al (1989) Ultraschalldiagnostik des Larynx mit Hilfe der Computersonographie. Laryngol Rhinol Otol 68(4):236–238CrossRefGoogle Scholar
  101. Hacki T (1996) Die Dysphonie und ihre Diagnostik. LOGOS 4(4):255–261Google Scholar
  102. Hammarberg B (2000) Voice research and clinical needs. Folia Phoniatr Logop 52(1–3):93–102PubMedCrossRefPubMedCentralGoogle Scholar
  103. Haynes WO, Moran MJ, Pindzola RH (2006) Communication disorders in the classroom: an introduction for Professionals in School Settings, 4th edn. Jones & Bartlett Learning, Burlington, MA, pp 267–269Google Scholar
  104. Helmholtz H (1875) On the sensations of tone as a physiological basis for the theory of music. Longmans, Green and Co., London, p 146Google Scholar
  105. Herbst CT, Oh J, Vydrová J et al (2015) DigitalVHI-a freeware open-source software application to capture the Voice Handicap Index and other questionnaire data in various languages. Logoped Phoniatr Vocol 40(2):72–76PubMedCrossRefPubMedCentralGoogle Scholar
  106. Heylen L, Wuyts F, Mertens F et al (1998) Evaluation of the vocal performance of children using a voice range profile index. J Speech Lang Hear Res 41(2):232–238PubMedCrossRefPubMedCentralGoogle Scholar
  107. Heylen L, Wuyts FL, Mertens F et al (2002) Normative voice range profiles of male and female professional voice users. J Voice 16(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  108. Hillman RE, Holmberg EB, Perkell JS et al (1989) Objective assessment of vocal hyperfunction: an experimental framework and initial results. J Speech Hear Res 32:373–392PubMedCrossRefPubMedCentralGoogle Scholar
  109. Hirano M, Koike Y, von Leden H (1968) Maximum phonation time and air usage during phonation. Folia Phoniatr 20(4):185–201CrossRefGoogle Scholar
  110. Hirano M (1974) Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr 26(2):89–94CrossRefGoogle Scholar
  111. Hirano M (1981) Clinical examination of voice. In: Arnold GE et al (eds) Disorders of human communication, vol 5. Springer, WienGoogle Scholar
  112. Hirano M (1989) Objective evaluation of the human voice: clinical aspects. Folia Phoniatr 41(2–3):89–144CrossRefGoogle Scholar
  113. Hogikyan ND, Sethuraman G (1999) Validation of an instrument to measure “voice-related quality of life” (VRQOL). J Voice 13(4):557–569PubMedCrossRefPubMedCentralGoogle Scholar
  114. Hosokawa K, Ogawa M, Hashimoto M et al (2014) Statistical analysis of the reliability of acoustic and electroglottographic perturbation parameters for the detection of vocal roughness. J Voice 28(2):263.e9–263.e16.  https://doi.org/10.1016/j.jvoice.2013.07.005 CrossRefGoogle Scholar
  115. Hsiao TY, Wang CL, Chen CN et al (2001) Noninvasive assessment of laryngeal phonation function using color Doppler ultrasound imaging. Ultrasound Med Biol 27(8):1035–1040PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hsiao TY, Wang CL, Chen CN et al (2002) Elasticity of human vocal folds measured in vivo using color Doppler imaging. Ultrasound Med Biol 28(9):1145–1152PubMedCrossRefPubMedCentralGoogle Scholar
  117. Hunter EJ, Titze IR (2010) Variations in intensity, fundamental frequency and voicing for teachers in occupational versus nonoccupational settings. J Speech Lang Hear Res 53(4):862–875PubMedPubMedCentralCrossRefGoogle Scholar
  118. Isogai Y (1994) X-ray stroboscopy and laryngostrobography. In: Proceedings of the 3rd International Symposium on Phonosurgery, Kyoto, 26–28 June 1994. International Association of Phonosurgeons, pp 238–239Google Scholar
  119. Jacobson BH, Johnson A, Grywalski C et al (1997) The Voice Handicap Index (VHI): development and validation. Am J Speech Lang Pathol 6:66–70CrossRefGoogle Scholar
  120. Jilek C, Marienhagen J, Hacki T (2004) Vocal stability in functional dysphonic versus healthy voices at different times of voice loading. J Voice 18(4):443–453PubMedCrossRefPubMedCentralGoogle Scholar
  121. Johnson DM, Hapner ER, Klein AM et al (2014) Validation of a telephone screening tool for spasmodic dysphonia and vocal fold tremor. J Voice 28(6):711–715PubMedCrossRefPubMedCentralGoogle Scholar
  122. Jun BC, Kim HT, Kim HS et al (2005) Clinical feasibility of the new technique of functional 3D laryngeal CT. Acta Otolaryngol 125(7):774–778PubMedCrossRefPubMedCentralGoogle Scholar
  123. Karnell M, Melton S, Childes J et al (2007) Reliability of Clinician-Based (GRABAS and CAPE-V) and Patient-Based (V-RQOL and IPVI) documentation of voice disorders. J Voice 21(5):576–590PubMedCrossRefPubMedCentralGoogle Scholar
  124. Kent RD, Kent JF, Rosenbek JC (1987) Maximum performance tests of speech production. J Speech Hear Disord 52(4):367–387PubMedCrossRefPubMedCentralGoogle Scholar
  125. Kim YC, Narayanan SS, Nayak KS et al (2009) Accelerated 3D MRI of vocal tract shaping using compressed sensing and parallel imaging. Proc IEEE Int Conf Acoust Speech Signal Process 34:389–392Google Scholar
  126. Kitzing P (1981) Veränderung der Sprechstimmlage bei Dysphoniepatienten in Zusammenhang mit Stimmbelastung. HNO-Praxis 6:215Google Scholar
  127. Kramer H, Doleschal J, Hacki T et al (1998) Verbesserung der Stimmbelastbarkeit durch stationäre Rehabilitationsmaßnahmen. In: Gross M (ed) Aktuelle phoniatrisch-pädaudiologische Aspekte 1997/98, vol 5. Median Verlag von Killisch Horn GmbH, Heidelberg, pp 76–79Google Scholar
  128. Kramer H, Pérez Álvarez JC, Hacki T (1999) Stimmleistungscharakterisierende Kurventypen im Stimmbelastungstest. In: Gross M (ed) Aktuelle phoniatrisch-pädaudiologische Aspekte 1998/99, 6th edn. Median Verlag von Killisch-Horn GmbH, Heidelberg, pp 75–79Google Scholar
  129. Kreiman J, Gerratt B, Precoda K et al (1992) Individual differences in voice quality perception. J Speech Hear Res 6(35):512–520CrossRefGoogle Scholar
  130. Kreiman J, Gerratt B, Kempster G et al (1993) Perceptual evaluation of voice quality: review, tutorial, and a framework for future research. J Speech Hear Res 2(36):21–40CrossRefGoogle Scholar
  131. Kroemer KHE, Grandjean E (1997) Fitting the task to the human. 5th edn. Taylor & Francis, LondonGoogle Scholar
  132. Landeck E (1974) Lippenläsionen bei Blechblasinstrumentalisten. Derm Mschr 160:762–765Google Scholar
  133. Lanz T, Wachsmuth W (1955) Praktische Anatomie. Ein Lehr- und Hilfsbuch der anatomischen Grundlagen ärztlichen Handelns Vol. 1, Part 2: Hals. Springer, Berlin-Göttingen-Heidelberg, pp 28–33, 204–205, 469Google Scholar
  134. Laukkanen AM, Järvinen K, Artkoski M et al (2004) Changes in voice and subjective sensations during a 45-min vocal loading test in female subjects with vocal training. Folia Phoniatr Logop 56(6):335–346PubMedCrossRefPubMedCentralGoogle Scholar
  135. Laukkanen AM, Kankare E (2006) Vocal loading-related changes in male teachers’ voices investigated before and after a working day. Folia Phoniatr Logop 58(4):229–239PubMedCrossRefPubMedCentralGoogle Scholar
  136. Laver J (1980) The Phonetic Description of Voice Quality. British Library Catalogue in Publication Data. Cambridge University Press, CambridgeGoogle Scholar
  137. Laver J, Hiller S, Mackenzie Beck J (1992) Acoustic waveform perturbation and voice disorders. J Voice 6(2):115–126CrossRefGoogle Scholar
  138. Lebacq J, DeJonckere PH (2019) The dynamics of voice onset. Biomed Signal Process Control 49:528–539CrossRefGoogle Scholar
  139. Lee L, Stemple J, Glaze L et al (2004) Quick Screen for Voice and supplementary documents for pediatric voice disorders. Lang Speech Hear Serv Sch 35(4):308–319PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lell MM, Gress H, Hothorn T et al (2004) Multiplanar functional imaging of the larynx and hypopharynx with multislice spiral CT. Eur Radiol 14(12):2198–2205PubMedCrossRefPubMedCentralGoogle Scholar
  141. Leno L (1971) Lip vibration characteristics of the trombone embouchure in performance. Instrumentalist 25:56–62Google Scholar
  142. Leno L (1974) Lip vibration characteristics of the trombone embouchure in performance. Brass Bulletin 7(1):7–41Google Scholar
  143. Leno L (1995) Eine Studie von (sic) Lippenvibrationen mit Highspeed-Fotographie. Schallstück 16:14–18Google Scholar
  144. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55Google Scholar
  145. Lindestad PÅ, Södersten M, Merker B et al (2001) Voice source characteristics in Mongolian “throat singing” studied with high-speed imaging technique, acoustic spectra, and inverse filtering. J Voice 15(1):78–85PubMedCrossRefPubMedCentralGoogle Scholar
  146. Liu S, Hayden GF (2002) Maladies in musicians. South Med J 95(7):727–734PubMedCrossRefPubMedCentralGoogle Scholar
  147. Loock F, Lorenz M (1981) Berufskrankheiten und Berufsunfähigkeiten bei Bläsern. Arbeitshygienische Beratungsstelle der Theater und Orchester der DDR (Berlin Ost). Arbeitsmedizinische Informationen für Theater und Orchester 4:12–16Google Scholar
  148. Luchsinger R (1949) Die Stroboskopie des Kehlkopfes. In: Luchsinger R, Arnold GE (eds) Lehrbuch der Stimm- und Sprachheilkunde. Springer, Wien, pp 30–36CrossRefGoogle Scholar
  149. Ma EP, Yiu EM (2001) Voice activity and participation profile: assessing the impact of voice disorders on daily activities. J Speech Lang Hear Res 44(3):511–524PubMedCrossRefPubMedCentralGoogle Scholar
  150. Maneiro F (2014) Ruptura del músculo orbicular de los labios en un músico de viento (syndrome de Satchmo), a propósito de un caso. (Rupture of the orbicular oris muscle in a wind instrument player SATCHMO Syndrome). About a particular case. Med Segur Trab 60:779–785CrossRefGoogle Scholar
  151. Manfredi C, Giordano A, Schoentgen J et al (2011) Validity of jitter measures in non-quasi-periodic voices, Part II: The effect of noise. Logoped Phoniatr Vocol 36(2):78–89PubMedCrossRefPubMedCentralGoogle Scholar
  152. Manfredi C, Giordano A, Schoentgen J et al (2012) Perturbation measurements in highly irregular voice signals: performances/validity of analysis software tools. Biomed Signal Process Control 7(4):37–42CrossRefGoogle Scholar
  153. Manfredi C, Dejonckere PH (2016) Voice dosimetry and monitoring, with emphasis on professional voice diseases: critical review and framework for future research. Logoped Phoniatr Vocol 41(2):49–65PubMedPubMedCentralGoogle Scholar
  154. Martens JW, Versnel H, Dejonckere PH (2007) The effect of visible speech in the perceptual rating of pathological voices. Arch Otolaryngol Head Neck Surg 13(2):178–185CrossRefGoogle Scholar
  155. Martin D (1942) Lip vibrations in a cornet mouthpiece. J Acoust Soc Am 13:305–308CrossRefGoogle Scholar
  156. Maryn Y, Corthals P, Van Cauwenberge P et al (2010a) Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels. J Voice 24(5):540–555PubMedCrossRefGoogle Scholar
  157. Maryn Y, De Bodt M, Roy N (2010b) The Acoustic Voice Quality Index: toward improved treatment outcomes assessment in voice disorders. J Commun Disord 43(3):161–174PubMedCrossRefGoogle Scholar
  158. Mauersberger R (2016) Lippenschwingungen und Stimmgebung bei Blechbläsern. Inauguraldissertation. Heinrich-Heine-Universität Düsseldorf, DüsseldorfGoogle Scholar
  159. Mayes RW, Jackson-Menaldi C, DeJonckere PH et al (2008) Laryngeal electroglottography as a predictor of laryngeal electromyography. J Voice 22(6):756–759PubMedCrossRefGoogle Scholar
  160. Mensch B (1964) Analyse par exploration ultrasonique du mouvement des cordes vocales isolées. Comptes rendus des séances de la Société de Biologie et de ses filiales 158 = A. 116, No. 7–12. Centre National de la Recherche Scientifique/Société de Biologie. Paris, Masson 1964, pp 2295–2296 (séance du 12 décembre 1964)Google Scholar
  161. Miles KA (1989) Ultrasound demonstration of vocal cord movements. Br J Radiol 62(741):871–872PubMedCrossRefGoogle Scholar
  162. Minifie FD, Kelsey CA, Hixon TJ (1968) Measurement of vocal fold motion using an ultrasonic Doppler velocity monitor. J Acoust Soc Am 43(5):1165–1169PubMedCrossRefGoogle Scholar
  163. Misono S, Merati AL (2012) Evidence-based practice: evaluation and management of unilateral vocal fold paralysis. Otolaryngol Clin N Am 45(5):1083–1108CrossRefGoogle Scholar
  164. Moreti F, Ávila ME, Rocha C et al (2012) Influence of complaints and singing style in singers voice handicap. J Soc Bras Fonoaudiol 24(3):296–300PubMedCrossRefPubMedCentralGoogle Scholar
  165. Morris S, Jawad MSM, Eccles R (1992) Relationships between vital capacity, height and nasal airway resistance in asymptomatic volunteers. Rhinology 30(4):259–264PubMedPubMedCentralGoogle Scholar
  166. Munin MC, Murry T, Rosen CA (2000) Laryngeal electromyography. Otolaryngol Clin N Am 33(4):759–770CrossRefGoogle Scholar
  167. Murlewska A, Gryczynski M, Gadzicki M (1992) Badania ultrasonograficzne krtani. Otolaryngol Pol 46(3):238–245PubMedPubMedCentralGoogle Scholar
  168. Murry T, Bone RC (1978) Aerodynamic relationships associated with normal phonation and paralytic dysphonia. Laryngoscope 88(1):100–109PubMedCrossRefPubMedCentralGoogle Scholar
  169. Nawka T, Verdonck-de Leeuw IM, De Bodt M et al (2009) Item reduction of the voice handicap index based on the original version and on European translations. Folia Phoniatr Logop 61(1):37–48PubMedCrossRefPubMedCentralGoogle Scholar
  170. Nawka T (2012) Untersuchung des Schwingungsablaufs der Stimmlippen. In: Seidner W, Nawka T (eds) Handreichungen zur Stimmdiagnostik. XION medical, Berlin, pp 75–98Google Scholar
  171. Neiman GS, Edeson B (1981) Procedural aspects of eliciting maximum phonation time. Folia Phoniatr 33(5):285–293Google Scholar
  172. Newton MJ, Campbell M, Gilbert J (2008) Mechanical response measurements of real and artificial brass player’s lips. J Acoust Soc Am 123:14–20CrossRefGoogle Scholar
  173. Niimi S, Miyaji M (2000) Vocal fold vibration and voice quality. Folia Phoniatr Logop 52(1–3):32–38PubMedCrossRefPubMedCentralGoogle Scholar
  174. Oertel M (1878) Über eine neue “laryngostroboskopische” Untersuchungsmethode des Kehlkopfes. Zbl med Wiss 16:81–82Google Scholar
  175. Oertel M (1895) Das Laryngo-Stroboskop und die laryngo-stroboskopische Untersuchung. Arch Laryngol Rhinol 3:1–16Google Scholar
  176. Ohlsson AC, Andersson EM, Södersten M et al (2012) Prevalence of voice symptoms and risk factors in teacher students. J Voice 26(5):629–634PubMedCrossRefPubMedCentralGoogle Scholar
  177. Ooi LLPJ (1992) B-mode real-time ultrasound assessment of vocal cord function in recurrent laryngeal nerve palsy. Ann Acad Med Singapore 21(2):214–216PubMedPubMedCentralGoogle Scholar
  178. Pabst F, Seiler R, Hacki T (1998) Zur Beurteilung der Sprechstimmleistungen nach Stimmbelastungstest mittels Stimmfeldmessung. In: Gross M (ed) Aktuelle phoniatrisch-pädaudiologische Aspekte 1997/98, vol 5. Median Verlag von Killisch Horn GmbH, Heidelberg, pp 73–75Google Scholar
  179. Papsin BC, Maaske LA, Mc Grail JS (1996) Orbicularis oris muscle injury in brass players. Laryngoscope 106(6):757–760PubMedCrossRefPubMedCentralGoogle Scholar
  180. Paulsen F (2010) Mundhöhle. In: Zilles K, Tillmann B (eds) Anatomie. Springer, Berlin, pp 424–425Google Scholar
  181. Pernambuco LA, Espelt A, Magalhaes HV et al (2016a) Screening for voice disorders in older adults (Rastreamento de Alteracoes Vocais em Idosos-RAVI)-Part I: Validity evidence based on test content and response processes. J Voice 30(2):246.e9–246.e16CrossRefGoogle Scholar
  182. Pernambuco LA, Espelt A, Magalhaes HV et al (2016b) Screening for voice disorders in older adults (Rastreamento de Alteracoes Vocais em Idosos-RAVI)-Part II: Validity evidence and reliability. J Voice 30(2):246.e19–246.e27CrossRefGoogle Scholar
  183. Phyland DJ, Oates J, Greenwood KM (1999) Self-reported voice problems among three groups of professional singers. J Voice 13(4):602–611PubMedCrossRefPubMedCentralGoogle Scholar
  184. Planas J (1982) Rupture of the orbicularis oris in trumpet players (Satchmo’s syndrome). Plast Reconstr Surg 69(4):690–693PubMedCrossRefPubMedCentralGoogle Scholar
  185. Planas J (1988) Further experience with rupture of the orbicularis oris in trumpet players. Plast Reconstr Surg 81(6):975–981PubMedCrossRefPubMedCentralGoogle Scholar
  186. Pruszewicz A (1992) Foniatria kliniczna. (Clinical phoniatrics). PZWL, WarsawGoogle Scholar
  187. Qiu Q, Schutte HK (2006) A new generation videokymography for routine clinical vocal-fold examination. Laryngoscope 116(10):1824–1828PubMedCrossRefPubMedCentralGoogle Scholar
  188. Raes JP, Clement PA (1996) Aerodynamic measurements of voice production. Acta Otorhinolaryngol Belg 50(4):293–298PubMedPubMedCentralGoogle Scholar
  189. Raghavendra BN, Horii SC, Reede DL et al (1987) Sonographic anatomy of the larynx, with particular reference to the vocal cords. J Ultrasound Med 6(5):225–230PubMedCrossRefPubMedCentralGoogle Scholar
  190. Rau D, Beckett RL (1984) Aerodynamic assessment of vocal function using hand-held spirometers. J Speech Hear Disord 49(2):183–188PubMedCrossRefPubMedCentralGoogle Scholar
  191. Reinhardt DS (1973) The encyclopedia of the pivot system for all cupped mouthpiece brass instruments: a scientific text. Colin, New YorkGoogle Scholar
  192. Revis J, Barberis S, Giovanni A (2000) Définition d’une mesure temporelle de l’attaque vocale. Rev Laryngol Otol Rhinol 121(5):291–296Google Scholar
  193. Ricci-Maccarini A, De Maio V, Murry T et al (2013) Development and validation of the children’s voice handicap index-10 (CVHI-10). J Voice 30(1):120–126CrossRefGoogle Scholar
  194. Rosen CA, Murry T (2000) Voice Handicap Index in singers. J Voice 14(3):370–377PubMedCrossRefPubMedCentralGoogle Scholar
  195. Rosen CA, Lee AS, Osborne J et al (2004) Development and validation of the Voice Handicap Index-10. Laryngoscope 114(9):1549–1556PubMedCrossRefPubMedCentralGoogle Scholar
  196. Rothenberg M (1973) A new inverse filtering technique for deriving the glottal airflow during voicing. J Acoust Soc Am 53(6):1632–1645PubMedCrossRefPubMedCentralGoogle Scholar
  197. Rothenberg M (1982) Interpolating subglottal pressure from oral pressure. J Speech Hear Disord 47(2):218–224CrossRefGoogle Scholar
  198. Rozanski VE, Rehfuess E, Bötzel K et al (2015) Aufgabenspezifische Dystonie bei professionellen Musikern—Ein systematisches Review zur Bedeutung des intensiven Musizierens als Risikofaktor. Dtsch Arztebl Int 112:871–877PubMedPubMedCentralGoogle Scholar
  199. Sapienza CM, Stathopoulos ET, Dromey C (1998) Approximations of open quotient and speed quotient from glottal and EGG waveforms: effects of measurement criteria and sound pressure level. J Voice 12(1):31–43PubMedCrossRefPubMedCentralGoogle Scholar
  200. Sataloff RT (1997) Professional voice. Singular Publishing Group, San DiegoGoogle Scholar
  201. Sataloff RT, Mandel S, Mann EA et al (2004) Practice parameter: laryngeal electromyography (an evidence-based review). J Voice 18(2):261274CrossRefGoogle Scholar
  202. Sataloff RT, Mandel S, Heman-Ackah YD et al (2005) Laryngeal electromyography, 2nd edn. Plural Publishing, San DiegoGoogle Scholar
  203. Sataloff RT (2005a) Clinical assessment of voice. Plural Publishing Inc, San Diego, CAGoogle Scholar
  204. Sataloff RT (2005b) Professional voice: the science and art of clinical care. Plural Publishing Inc, San Diego, CAGoogle Scholar
  205. Saxon KG, Schneider CM (1995) Vocal exercise physiology. Singular Publishing Group, San DiegoGoogle Scholar
  206. Schaefer SD (2014) Management of acute blunt and penetrating external laryngeal trauma. Laryngoscope 124(1):233–244PubMedCrossRefPubMedCentralGoogle Scholar
  207. Schindler O, Gonella ML, Pisani R (1990) Doppler ultrasound examination of the vibration speed of vocal folds. Folia Phoniatr 42(5):265–272CrossRefGoogle Scholar
  208. Schneider-Stickler B, Knell C, Aichstill B et al (2012) Biofeedback on voice use in call center agents in order to prevent occupational voice disorders. J Voice 26(1):51–62PubMedCrossRefPubMedCentralGoogle Scholar
  209. Schönhärl E (1960) Die Stroboskopie in der praktischen Laryngologie. Thieme, StuttgartGoogle Scholar
  210. Schultz-Coulon HJ (1990) Stimmfeldmessung. Springer, BerlinCrossRefGoogle Scholar
  211. Schuppert M, Altenmüller E (2000) Berufsspezifische Erkrankungen bei Musikern. Orchester 48:24–29Google Scholar
  212. Schutte HK (1980) The efficiency of voice production. Thesis, University of Groningen, GroningenGoogle Scholar
  213. Schutte HK (1992) Integrated aerodynamic measurements. J Voice 6(2):127–134CrossRefGoogle Scholar
  214. Schutte HK, Seidner W (2005) Physiologische Grundlagen. In: Wendler J et al (eds) Lehrbuch der Phoniatrie und Pädaudiologie, 4th edn. Thieme, Stuttgart, p 80Google Scholar
  215. Scott AD, Wylezinska M, Birch MJ et al (2014) Speech MRI: morphology and function. Phys Med 30(6):604–618PubMedCrossRefPubMedCentralGoogle Scholar
  216. Seidner W, Eysholdt U (2005) Stimme—Diagnostik. In: Wendler J et al (eds) Lehrbuch der Phoniatrie und Pädaudiologie, 4th edn. Thieme, Stuttgart, pp 115–116Google Scholar
  217. Seidner W (2012) Messung der stimmlichen Belastbarkeit. In: Seidner W, Nawka T (eds) Handreichungen zur Stimmdiagnostik. XION GmbH, BerlinGoogle Scholar
  218. Shau YW, Wang CL, Hsieh FJ et al (2001) Noninvasive assessment of vocal fold mucosal wave velocity using color Doppler imaging. Ultrasound Med Biol 27(11):1451–1460PubMedCrossRefPubMedCentralGoogle Scholar
  219. Sherer RC, Titze IR (1987) The abduction quotient related to vocal quality. J Voice 1(3):246–251CrossRefGoogle Scholar
  220. Sherman D, Jensen R (1962) Harshness and oral reading time. J Speech Hear Res 27:172–177CrossRefGoogle Scholar
  221. Siegert C (1987) Recommendation for a standard tolerance test. Union of European Phoniatricians, Annual Bulletin, pp 46–47Google Scholar
  222. Simberg S, Sala E, Laine A et al (2001) A fast and easy screening method for voice disorders among teacher students. Logoped Phoniatr Vocol 26(1):10–16PubMedCrossRefPubMedCentralGoogle Scholar
  223. Singer K (1926) Berufskrankheiten der Musiker. Systematische Darstellung ihrer Ursachen, Symptome und Behandlungsmethoden. Hesse, Berlin, pp 130–131Google Scholar
  224. Sonninen A, Damsté PH, Jol J et al (1974) Microdynamics in vocal fold vibration. Acta Otolaryngol 78:1–6CrossRefGoogle Scholar
  225. Speyer R, Wieneke GH, van Wijck-Warnaar I et al (2003) Effects of voice therapy on the voice range profiles of dysphonic patients. J Voice 17(4):544–556PubMedCrossRefPubMedCentralGoogle Scholar
  226. Speyer R, Wieneke GH, Dejonckere PH (2004a) The use of acoustic parameters for the evaluation of voice therapy for dysphonic patients. Acta Acust united Ac 90(3):520–527Google Scholar
  227. Speyer R, Wieneke GH, Dejonckere PH (2004b) Documentation of progress in voice therapy: perceptual, acoustic and laryngostroboscopic findings pretherapy and posttherapy. J Voice 18(3):325–339PubMedCrossRefPubMedCentralGoogle Scholar
  228. Šram F, Švec J, Schutte HK (1998) Possibilities for use of videokymography in laryngologic and phoniatric practice. In: Dejonckere PH, Peters HFM (eds) Communication and its disorders: a science in progress: proceedings of the 24th congress of the International Association of Logopedics and Phoniatrics. Amsterdam, 23–27 August 1998. University press, Nijmegen, pp 256–259Google Scholar
  229. Šram F, Švec J (2000) Die Tonerzeugung beim Spielen von Blasinstrumenten. In: Pahn J et al (eds) Sprache und Musik: Beiträge der 71. Jahrestagung der Deutschen Gesellschaft für Sprach- und Stimmheilkunde. Zeitschrift für Dialektologie und Linguistik: Beihefte; Heft 107. Berlin, 12–13 März 1999. Steiner, Stuttgart, pp 155–159Google Scholar
  230. Sramkova H, Granqvist S, Herbst CT et al (2015) The softest sound levels of the human voice in normal subjects. J Acoust Soc Am 137(1):407–418PubMedCrossRefPubMedCentralGoogle Scholar
  231. Stevenson S, Campbell M, Bromage S (2009) Motion of the lips of brass players during extremely loud playing. J Acoust Soc Am 125:152–157CrossRefGoogle Scholar
  232. Stone R, Scharf D (1973) Vocal change associated with the use of atypical pitch and intensity levels. Folia Phoniatr Logop 25:91–103CrossRefGoogle Scholar
  233. Story BH, Titze I (1995) Voice simulation with a body-cover model of the vocal folds. J Acoust Soc Am 97(2):1249–1260PubMedCrossRefPubMedCentralGoogle Scholar
  234. Sullivan WG (1989) Repair of ruptured orbicularis oris in trumpet players. Plast Reconstr Surg 83:578PubMedCrossRefPubMedCentralGoogle Scholar
  235. Sung MW, Kim KH, Koh TY et al (1999) Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration. Laryngoscope 109(11):1859–1863PubMedCrossRefPubMedCentralGoogle Scholar
  236. Švec JG, Schutte HK (1996) Videokymography: high-speed line scanning of vocal fold vibration. J Voice 10(2):201–205PubMedCrossRefPubMedCentralGoogle Scholar
  237. Švec J, Šram F, Schutte HK (1999) Videokymografie: nová vysokofrekvenční metoda vyšetřování kmitů hlasivek. (Videokymography: a new high-speed method for the examination of vocal-fold vibrations). Otorinolaryngologie a Foniatrie (Praha) 48:155–162Google Scholar
  238. Švec J, Šram F (2002) Kymographic imaging of the vocal fold oscillations. In: Hansen JHL, Pellom B (eds) Proceedings of the 7th International Conference on Spoken Language Processing. Denver, CO, 16–20 Sept 2002. Center for Spoken Language Research, Boulder, pp 957–960Google Scholar
  239. Švec J, Titze IR, Popolo P (2005) Estimation of sound pressure levels of voiced speech from skin vibration of the neck. J Acoust Soc Am 117(3 Pt 1):1386–1394PubMedCrossRefPubMedCentralGoogle Scholar
  240. Švec JG, Šram F, Schutte HK (2007) Videokymography in voice disorders: what to look for? Ann Otol Rhinol Laryngol 116(3):172–180PubMedCrossRefPubMedCentralGoogle Scholar
  241. Švec JG, Šram F, Schutte HK (2009) Videokymography. In: Fried MP, Ferlito A (eds) The larynx, vol 1, 3rd edn. Plural Publishing, San Diego, CA, pp 253–274Google Scholar
  242. Švec JG, Granqvist S (2010) Guidelines for selecting microphones for human voice production research. Am J Speech Lang Pathol 19(4):356–368PubMedCrossRefPubMedCentralGoogle Scholar
  243. Švec JG, Šram F (2011) Videokymographic examination of voice. In: Ma EPM, Yiu EML (eds) Handbook of voice assessments. Plural Publishing, San Diego, CA, pp 129–146Google Scholar
  244. Švec JG, Schutte HK (2012) Kymographic imaging of laryngeal vibrations. Curr Opin Otolaryngol Head Neck Surg 20(6):458–465PubMedCrossRefPubMedCentralGoogle Scholar
  245. Tillmann B (1997) Farbatlas der Anatomie Zahnmedizin-Humanmedizin. Thieme, Stuttgart, p 98Google Scholar
  246. Titze IR (1992a) Phonation threshold pressure—a missing link in glottal aerodynamics. J Acoust Soc Am 91(5):2926–2935PubMedCrossRefPubMedCentralGoogle Scholar
  247. Titze IR (1992b) Acoustic interpretation of the voice profile (phonetogram). J Speech Hear Res 35(1):21–34PubMedCrossRefPubMedCentralGoogle Scholar
  248. Titze IR, Liang H (1993) Comparison of Fo extraction models for high precision voice perturbation measurements. J Speech Hear Res 36(6):1120–1133PubMedCrossRefPubMedCentralGoogle Scholar
  249. Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  250. Titze IR (1995) Workshop on acoustic voice analysis: summary statement. National Center for Voice and Speech, The University of Iowa, DenverGoogle Scholar
  251. Titze IR, Lemke J, Montequin D (1997) Populations in the US workforce who rely on voice as a primary tool of trade: a preliminary report. J Voice 11(3):254–259PubMedCrossRefPubMedCentralGoogle Scholar
  252. Traser L, Burdumy M, Richter B et al (2013) The effect of supine and upright position on vocal tract configurations during singing—a comparative study in professional tenors. J Voice 27(2):141–148PubMedCrossRefPubMedCentralGoogle Scholar
  253. Tsai CG, Shau YW, Liu HM et al (2008) Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging. J Voice 22(3):275–282PubMedCrossRefPubMedCentralGoogle Scholar
  254. Unger J, Schuster M, Hecker DJ et al (2016) A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms. Artif Intell Med 66(C):15–28PubMedCrossRefPubMedCentralGoogle Scholar
  255. Van de Heyning PH, Remacle M, Cauwenberge PV et al (1996) Research work of the Belgian study group on Voice disorders. Acta Otorhinolaryngol Belg 50(4):321–386Google Scholar
  256. Valente T, Farina R, Minelli S et al (1996) Anatomia ecografica della laringe e delle strutture perilaringee. Radiol Med 91(3):231–237PubMedPubMedCentralGoogle Scholar
  257. Ventura S, Diamantino F, João M et al (2011) Imaging of the Vocal Tract Based on Magnetic Resonance Techniques. In: Ranchordas A et al (eds) Computer vision, imaging and computer graphics. Theory and applications. Springer, Heidelberg, pp 146–157Google Scholar
  258. Verdolini K (1994) Voice disorders. In: Tomblin JB et al (eds) Diagnosis in speech-language pathology. Singular Publishing Group, San Diego, pp 247–306Google Scholar
  259. Verduyckt I, Remacle M, Jamart J et al (2011) Voice-related complaints in the pediatric population. J Voice 25(3):373–380PubMedPubMedCentralCrossRefGoogle Scholar
  260. Verduyckt I, Morsomme D, Remacle M (2012) Validation and standardization of the Pediatric Voice Symptom Questionnaire: a double-form questionnaire for dysphonic children and their parents. J Voice 26(4):e129–e139CrossRefGoogle Scholar
  261. Vilkman E (2004) Occupational safety and health aspects of voice and speech professions. Folia Phoniatr Logop 56(4):220–253PubMedCrossRefPubMedCentralGoogle Scholar
  262. Vintturi J (2001) Studies on Voice Production. Academic dissertation. Medical Faculty of the University of Helsinki, HelsinkiGoogle Scholar
  263. Vintturi J, Alku P, Lauri ER et al (2001) The effects of post-loading rest on acoustic parameters with special reference to gender and ergonomic factors. Folia Phoniatr Logop 53(6):338–350PubMedCrossRefPubMedCentralGoogle Scholar
  264. Watson C (1994) Database management of the voice clinic and laboratory. J Voice 3:99–106Google Scholar
  265. Welsch U (2006) Lehrbuch histologie, 2nd edn. Urban & Fischer, München, pp 338–339Google Scholar
  266. Wendler J, Anders LC, Krüger H (1986) Classification of voice qualities. J Phon 14:483–488CrossRefGoogle Scholar
  267. Wendler J, Seidner W (1996) Lehrbuch der Phoniatrie und Pädaudiologie. Thieme, StuttgartGoogle Scholar
  268. Wilson DK (1987) Voice problems of children, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  269. Wilson JA, Webb A, Carding PN et al (2004) The VoiSS and the VHI: a comparison of structure and content. Clin Otolaryngol 29(2):169–174PubMedCrossRefPubMedCentralGoogle Scholar
  270. Wittenberg T, Tigges M, Mergell P et al (2000) Functional imaging of vocal fold vibration: digital multislice high-speed kymography. J Voice 14(3):422–442PubMedCrossRefPubMedCentralGoogle Scholar
  271. Wolfe V, Fitch J, Martin D (1997) Acoustic measures of dysphonic severity across and within voice types. Folia Phoniatr Logop 49(6):292–299PubMedCrossRefPubMedCentralGoogle Scholar
  272. Woo P, Colton RH, Shangold L (1987) Phonatory air flow analysis in patients with laryngeal disease. Ann Otol Rhinol Laryngol 96(5):549–555PubMedCrossRefPubMedCentralGoogle Scholar
  273. Woo P, Casper J, Colton R et al (1994) Aerodynamic and stroboscopic findings before and after microlaryngeal phonosurgery. J Voice 8(2):186–194PubMedCrossRefPubMedCentralGoogle Scholar
  274. World Health Organization (1971) The economics of health and disease. WHO Chron 25:20–24Google Scholar
  275. Wuyts FL, De Bodt MS, Molenberghs G et al (2000) The dysphonia severity index. An objective measure of vocal quality based on a multiparameter approach. J Speech Hear Res 43(3):796–809CrossRefGoogle Scholar
  276. Yu P, Ouaknine M, Giovanni A (2000) Intérêt clinique du calcul des coefficients de Lyapunov pour l’analyse objective des dysphonies. (Clinical significance of calculating the coefficients of Lyapunov in the objective assessment of dysphonia). Rev Laryngol Otol Rhinol 121(5):301–305Google Scholar
  277. Yumoto E, Oyamada Y, Nakano K et al (2004) Three-dimensional characteristics of the larynx with immobile vocal fold. Arch Otolaryngol Head Neck Surg 130(8):967–974PubMedCrossRefGoogle Scholar
  278. Zappia F, Campani R (2000) La laringe: studio ecografico anatomico e funzionale. Radiol Med 99:138–144PubMedGoogle Scholar
  279. Zarzur AP, de Campos DA, Cataldo BO et al (2014) Laryngeal electromyography as a diagnostic tool for Parkinson’s disease. Laryngoscope 124(3):725–729PubMedCrossRefGoogle Scholar
  280. Zeller HJ (1985) Therapieempfehlungen bei Beschäftigungsneuropathien und Beschäftigungsneurosen von Blechbläsern. Arbeitshygienische Beratungsstelle der Theater und Orchester der DDR (Berlin Ost). Arbeitsmedizinische Informationen für Theater und Orchester 8:1–8Google Scholar
  281. Zraick RI, Smith-Olinde L, Shotts LL (2012) Adult normative data for the KAYPentax Phonatory Aerodynamic System Model 6600. J Voice 26(2):164–176PubMedCrossRefGoogle Scholar
  282. Zur KB, Cotton S, Kelchner L et al (2007) Pediatric Voice Handicap Index (pVHI): a new tool for evaluating pediatric dysphonia. Int J Pediatr Otorhinolaryngol 71(1):77–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Wolfgang Angerstein
    • 1
    Email author
  • Giovanna Baracca
    • 2
  • Philippe Dejonckere
    • 3
  • Matthias Echternach
    • 4
  • Ulrich Eysholdt
    • 5
  • Franco Fussi
    • 6
  • Ahmed Geneid
    • 7
  • Tamás Hacki
    • 8
  • Katarzyna Karmelita-Katulska
    • 9
  • Renate Haubrich
    • 10
  • František Šram
    • 11
  • Jan G. švec
    • 12
  • Jitka Vydrová
    • 11
  • Bożena Wiskirska-Woźnica
    • 13
  1. 1.Phoniatrie und PädaudiologieUniv.-Klinikum DüsseldorfDüsseldorfGermany
  2. 2.ENT DepartmentAO Niguarda Cà GrandaMilanItaly
  3. 3.Federal Agency for Occupational RisksBrusselsBelgium
  4. 4.Department of Otorhinolaryngology, Division of Phoniatrics and Pediatric AudiologyMunich University Hospital (LMU), Campus GroßhadernMunichGermany
  5. 5.Department of Medical Physics and Acoustics/Medical Physics and Cluster of Excellence Hearing4allCarl von Ossietzky-Universität OldenburgOldenburgGermany
  6. 6.AudioPhoniatric Centre, Azienda USL RomagnaRavennaItaly
  7. 7.Department of Otolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University Central HospitalHelsinkiFinland
  8. 8.Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University BudapestBudapestHungary
  9. 9.Department of NeuroradiologyUniversity of Medical Sciences in PoznanPoznanPoland
  10. 10.Evangelisches Klinikum Niederrhein Duisburg-Nord, Zentrale Abteilung für Diagnostische und Interventionelle RadiologieDuisburgGermany
  11. 11.Voice and Hearing Centre PraguePrague 2Czech Republic
  12. 12.Department of Biophysics, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  13. 13.Department of Phoniatrics and AudiologyPoznan University of Medical SciencesPoznanPoland

Personalised recommendations