Adaptive Steganography and Steganalysis with Fixed-Size Embedding

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8948)


We analyze a two-player zero-sum game between a steganographer, Alice, and a steganalyst, Eve. In this game, Alice wants to hide a secret message of length \(k\) in a binary sequence, and Eve wants to detect whether a secret message is present. The individual positions of all binary sequences are independently distributed, but have different levels of predictability. Using knowledge of this distribution, Alice randomizes over all possible size-\(k\) subsets of embedding positions. Eve uses an optimal (possibly randomized) decision rule that considers all positions, and incorporates knowledge of both the sequence distribution and Alice’s embedding strategy.

Our model extends prior work by removing restrictions on Eve’s detection power. We give defining formulas for each player’s best response strategy and minimax strategy; and we present additional structural constraints on the game’s equilibria. For the special case of length-two binary sequences, we compute explicit equilibria and provide numerical illustrations.


Game theory Content-adaptive steganography Security 



We thank the reviewers for their comments on an earlier version of this paper. We gratefully acknowledge support by the Penn State Institute for Cyber-Science. The second author’s research visit at Penn State was supported under Visiting Scientists Grant N62909-13-1-V029 by the Office of Naval Research (ONR), and the third author’s research visit at Penn State was supported by the Campus Hungary Program.


  1. 1.
    Acquisti, A., Dingledine, R., Syverson, P.F.: On the economics of anonymity. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 84–102. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  2. 2.
    Anderson, R.: Stretching the limits of steganography. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 39–48. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  3. 3.
    Barni, M., Tondi, B.: The source identification game: an information-theoretic perspective. IEEE Trans. Inf. Forensics Secur. 8(3), 450–463 (2013)CrossRefGoogle Scholar
  4. 4.
    Böhme, R.: Advanced Statistical Steganalysis. Springer, Berlin (2010) CrossRefzbMATHGoogle Scholar
  5. 5.
    Böhme, R., Westfeld, A.: Exploiting preserved statistics for steganalysis. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 82–96. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  6. 6.
    Chia, P.H., Chuang, J.: Colonel Blotto in the phishing war. In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 201–218. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Denemark, T., Fridrich, J.: Detection of content adaptive LSB matching: a game theory approach. In: Alattar, A., Memon, N., Heitzenrater, C. (eds.) Proceedings SPIE, Media Watermarking, Security, and Forensics, vol. 9028, p. 902804. SPIE and IS&T (2014)Google Scholar
  8. 8.
    Ettinger, J.M.: Steganalysis and game equilibria. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 319–328. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  9. 9.
    Franz, E.: Steganography preserving statistical properties. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 278–294. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  10. 10.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, New York (2009) CrossRefGoogle Scholar
  11. 11.
    Fridrich, J., Goljan, M.: On estimation of secret message length in LSB steganography in spatial domain. In: Delp, E., Wong, P. (eds.) Proceedings SPIE, Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 23–34. SPIE (2004)Google Scholar
  12. 12.
    Fridrich, J., Kodovsky, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, pp. 2949–2953, May 2013Google Scholar
  13. 13.
    Fridrich, J., Du, R.: Secure steganographic methods for palette images. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 47–60. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  14. 14.
    Grossklags, J., Christin, N., Chuang, J.: Secure or insure?: A game-theoretic analysis of information security games. In: Proceedings of the 17th International World Wide Web Conference (WWW), Beijing, China, pp. 209–218, April 2008Google Scholar
  15. 15.
    Guo, L., Ni, J., Shi, Y.: Uniform embedding for efficient JPEG steganography. IEEE Trans. Inf. Forensics Secur. 9(5), 814–825 (2014)CrossRefGoogle Scholar
  16. 16.
    Hélouët, L., Zeitoun, M., Degorre, A.: Scenarios and covert channels: another game. Electron. Notes Theor. Comput. Sci. 119(1), 93–116 (2005)CrossRefGoogle Scholar
  17. 17.
    Johnson, B., Böhme, R., Grossklags, J.: Security games with market insurance. In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 117–130. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  18. 18.
    Johnson, B., Schöttle, P., Böhme, R.: Where to hide the bits? In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 1–17. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Johnson, B., Schöttle, P., Laszka, A., Grossklags, J., Böhme, R.: Bitspotting: detecting optimal adaptive steganography. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 3–18. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  20. 20.
    Ker, A.: Batch steganography and the threshold game. In: Delp, E., Wong, P. (eds.) Proceedings SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, pp. 0401–0413. SPIE (2007)Google Scholar
  21. 21.
    Laszka, A., Foldes, A.: Modeling content-adaptive steganography with detection costs as a quasi-zero-sum game. Infocomm. J. 5(4), 33–43 (2013)Google Scholar
  22. 22.
    Laszka, A., Johnson, B., Schöttle, P., Grossklags, J., Böhme, R.: Managing the weakest link. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 273–290. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    Maillé, P., Reichl, P., Tuffin, B.: Interplay between security providers, consumers, and attackers: a weighted congestion game approach. In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp. 67–86. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. 24.
    Moulin, P., Ivanovic, A.: The zero-rate spread-spectrum watermarking game. IEEE Trans. Signal Process. 51(4), 1098–1117 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Orsdemir, A., Altun, O., Sharma, G., Bocko, M.: Steganalysis-aware steganography: statistical indistinguishability despite high distortion. In: Delp, E., Wong, P., Dittmann, J., Memon, N. (eds.) Proceedings SPI, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, vol. 6819, p. 681915. SPIE (2008)Google Scholar
  27. 27.
    Petitcolas, F.: Introduction to information hiding. In: Katzenbeisser, S., Petitcolas, F. (eds.) Information Hiding Techniques for Steganography and Digital Watermarking, Recent Titles in the Artech House Computer Security Series, pp. 1–14. Artech House, Boston (2000)Google Scholar
  28. 28.
    Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  29. 29.
    Pita, J., Jain, M., Ordónez, F., Portway, C., Tambe, M., Western, C., Paruchuri, P., Kraus, S.: Using game theory for Los Angeles airport security. AI Mag. 30(1), 43–57 (2009)Google Scholar
  30. 30.
    Schöttle, P., Böhme, R.: A game-theoretic approach to content-adaptive steganography. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 125–141. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  31. 31.
    Schöttle, P., Laszka, A., Johnson, B., Grossklags, J., Böhme, R.: A game-theoretic analysis of content-adaptive steganography with independent embedding. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, September 2013Google Scholar
  32. 32.
    Stamm, M., Lin, W., Liu, K.: Forensics vs. anti-forensics: a decision and game theoretic framework. In: Proceedings of the 2012 IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP), Kyoto, Japan, pp. 1749–1752, March 2012Google Scholar
  33. 33.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CylabCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Information SystemsUniversity of MünsterMünsterGermany
  3. 3.Institute for Software Integrated SystemsVanderbilt UniversityNashvilleUSA
  4. 4.College of Information Sciences and TechnologyPennsylvania State UniversityUniversity ParkUSA
  5. 5.School of InformationUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations