Advertisement

Equivalent Key Recovery Attacks Against HMAC and NMAC with Whirlpool Reduced to 7 Rounds

  • Jian Guo
  • Yu Sasaki
  • Lei Wang
  • Meiqin Wang
  • Long Wen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8540)

Abstract

A main contribution of this paper is an improved analysis against HMAC instantiating with reduced Whirlpool. It recovers equivalent keys, which are often denoted as \(K_{in}\) and \(K_{out}\), of HMAC with 7-round Whirlpool, while the previous best attack can work only for 6 rounds. Our approach is applying the meet-in-the-middle (MITM) attack on AES to recover MAC keys of Whirlpool. Several techniques are proposed to bypass different attack scenarios between a block cipher and a MAC, e.g., the chosen plaintext model of the MITM attacks on AES cannot be used for HMAC-Whirlpool. Besides, a larger state size and different key schedule designs of Whirlpool leave us a lot of room to study. As a result, equivalent keys of HMAC with 7-round Whirlpool are recovered with a complexity of \((\mathrm {Data},\mathrm {Time},\mathrm {Memory})=(2^{481.7},2^{482.3},2^{481})\).

Keywords

HMAC NMAC Whirlpool Universal forgery Key recovery 

Notes

Acknowledgments

We would like to thank the organizers, Meiqin Wang and Hongbo Yu, of ASK 2013 workshop http://www.infosec.sdu.edu.cn/ask2013/ in China, without which the collaboration in this work could not be possible. Jian Guo and Lei Wang were supported by the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

  1. 1.
    Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL Hashing Function. Submitted to NISSIE, September 2000Google Scholar
  2. 2.
    NESSIE: New European Schemes for Signatures, Integrity, and Encryption. IST-1999-12324. http://cryptonessie.org/
  3. 3.
    Dai, W.: Crypto++ library. http://www.cryptopp.com/
  4. 4.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: The Rebound Attack and Subspace Distinguishers: Application to Whirlpool. J. Cryptol. 28(2), 257–296 (2009)CrossRefGoogle Scholar
  7. 7.
    Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and Others. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012) Google Scholar
  9. 9.
    Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Requirements on Whirlpool: Improved Preimage and Collision Attacks. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996) Google Scholar
  11. 11.
    Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  12. 12.
    Peyrin, T., Sasaki, Y., Wang, L.: Generic Related-Key Attacks for HMAC. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  13. 13.
    Naito, Y., Sasaki, Y., Wang, L., Yasuda, K.: Generic State-Recovery and Forgery Attacks on ChopMD-MAC and on NMAC/HMAC. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 83–98. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks Against Hash-based MACs. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 1–20. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Contini, S., Yin, Y.L.: Forgery and Partial Key-recovery Attacks on HMAC and NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  17. 17.
    Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-random Properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 119–133. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Rechberger, C., Rijmen, V.: New Results on NMAC/HMAC When Instantiated With Popular Hash Functions. J. UCS 14, 347–376 (2008)MathSciNetGoogle Scholar
  19. 19.
    Lee, E., Chang, D., Kim, J.-S., Sung, J., Hong, S.H.: Second Preimage Attack on 3-Pass HAVAL and Partial Key-recovery Attacks on HMAC/NMAC-3-Pass HAVAL. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 189–206. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Yu, H., Wang, X.: Full Key-recovery Attack on the HMAC/NMAC Based on 3 and 4-Pass HAVAL. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 285–297. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  21. 21.
    Sasaki, Y., Wang, L.: Improved Single-key Distinguisher on HMAC-MD5 and Key Recovery Attacks on Sandwich-MAC-MD5. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 493–512. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  22. 22.
    European Union Agency for Network and Information Security: Algorithms, key sizes and parameters report, October 2013. http://www.enisa.europa.eu/
  23. 23.
    Guo, J., Sasaki, Y., Wang, L., Wu, S.: Cryptanalysis of HMAC/NMAC-Whirlpool. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 21–40. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Derbez, P., Fouque, P.-A., Jean, J.: Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  25. 25.
    Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192 and AES-256 [43]. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  26. 26.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  27. 27.
    Knellwolf, S., Khovratovich, D.: New Preimage Attacks Against Reduced SHA-1. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 367–383. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  28. 28.
    Krawczyk, H.: RFC: HMAC-Based Extract-and-Expand Key Derivation Function (HKDF), May 2010. https://tools.ietf.org/html/rfc5869.txt
  29. 29.
    U.S. Department of Commerce, National Institute of Standards and Technology: The Keyed-hash Message Authentication Code (HMAC) (Federal Information Processing Standards Publication 198), July 2008. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
  30. 30.
    Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  31. 31.
    Tsudik, G.: Message Authentication with One-Way Hash Functions. SIGCOMM Comput. Commun. Rev. 22(5), 29–38 (1992)CrossRefGoogle Scholar
  32. 32.
    Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 578–597. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  33. 33.
    Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-middle Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2 [43]. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  34. 34.
    Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-the-middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  35. 35.
    Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of Rounds. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986) Google Scholar
  36. 36.
    Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  37. 37.
    Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds Rijndael. In: Third AES Candidate Conference (AES3), New York, pp. 230–241 (2000)Google Scholar
  38. 38.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)Google Scholar
  39. 39.
    Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  40. 40.
    Wei, Y., Lu, J., Hu, Y.: Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher Under 192 Key Bits. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 222–232. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  41. 41.
    Yasuda, K.: Sandwich Is Indeed Secure: How to Authenticate a Message with Just One Hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 355–369. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  42. 42.
    Kaliski Jr., B.S., Robshaw, M.J.B.: Message Authentication with MD5. Technical report, CryptoBytes (1995)Google Scholar
  43. 43.
    Abe, M. (ed.): ASIACRYPT 2010. LNCS, vol. 6477. Springer, Heidelberg (2010) zbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Jian Guo
    • 1
  • Yu Sasaki
    • 2
  • Lei Wang
    • 1
  • Meiqin Wang
    • 3
  • Long Wen
    • 3
  1. 1.Nanyang Technological UniversitySingaporeSingapore
  2. 2.NTT Secure Platform LaboratoriesTokyoJapan
  3. 3.Key Laboratory of Cryptologic Technology and Information Security, Ministry of EducationShandong UniversityJinanChina

Personalised recommendations