Advertisement

Nested Antichains for WS1S

  • Tomáš Fiedor
  • Lukáš Holík
  • Ondřej Lengál
  • Tomáš Vojnar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)

Abstract

We propose a novel approach for coping with alternating quantification as the main source of nonelementary complexity of deciding WS1S formulae. Our approach is applicable within the state-of-the-art automata-based WS1S decision procedure implemented, e.g. in MONA. The way in which the standard decision procedure processes quantifiers involves determinization, with its worst case exponential complexity, for every quantifier alternation in the prefix of a formula. Our algorithm avoids building the deterministic automata—instead, it constructs only those of their states needed for (dis)proving validity of the formula. It uses a symbolic representation of the states, which have a deeply nested structure stemming from the repeated implicit subset construction, and prunes the search space by a nested subsumption relation, a generalization of the one used by the so-called antichain algorithms for handling nondeterministic automata. We have obtained encouraging experimental results, in some cases outperforming MONA by several orders of magnitude.

Keywords

Decision Procedure Symbolic Representation Tree Automaton Deterministic Automaton Nondeterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meyer, A.R.: Weak monadic second order theory of successor is not elementary-recursive. In: Proc. of Logic Colloquium—Symposium on Logic Held at Boston. LNCS, vol. 453. Springer (1972)Google Scholar
  2. 2.
    Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Klarlund, N., Møller, A.: MONA Ver. 1.4 Manual. http://www.brics.dk/mona/
  4. 4.
    Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data. In: Proc. of POPL 2011. ACM (2011)Google Scholar
  5. 5.
    Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 43–59. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Science of Computer Programing 77(9) (2012)Google Scholar
  8. 8.
    Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In: Proc. of POPL 2008. ACM (2008)Google Scholar
  9. 9.
    Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded domains. In: Proc. of FMCAD 2010. IEEE (2010)Google Scholar
  10. 10.
    Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: A stand-alone tool and jABC plugin for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 293–298. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Ganzow, T., Kaiser, L.: New algorithm for weak monadic second-order logic on inductive structures. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 366–380. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 476–491. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains (on checking language inclusion of NFAs). In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Bustan, D., Grumberg, O.: Simulation based minimization. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 255–270. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: Proc. of POPL 2013. ACM (2013)Google Scholar
  18. 18.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2008)Google Scholar
  19. 19.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Technical report, The University of Michigan (1959, 2010), http://hdl.handle.net/2027.42/3930
  20. 20.
    Fiedor, T., Holík, L., Lengál, O., Vojnar, T.: dWiNA (2014). http://www.fit.vutbr.cz/research/groups/verifit/tools/dWiNA/
  21. 21.
    Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 79–94. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Abdulla, P.A., Bouajjani, A., Holík, L., Kaati, L., Vojnar, T.: Computing simulations over tree automata: Efficient techniques for reducing tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap manipulation. Formal Methods in System Design 41(1) (2012)Google Scholar
  24. 24.
    Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Fiedor, T., Holík, L., Lengál, O., Vojnar, T.: Nested Antichains for WS1S. Technical report FIT-TR-2014-06, http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-06.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tomáš Fiedor
    • 1
  • Lukáš Holík
    • 1
  • Ondřej Lengál
    • 1
  • Tomáš Vojnar
    • 1
  1. 1.IT4Innovations Centre of ExcellenceFIT, Brno University of TechnologyBrnoCzech Republic

Personalised recommendations