Assume-Guarantee Synthesis for Concurrent Reactive Programs with Partial Information

  • Roderick Bloem
  • Krishnendu Chatterjee
  • Swen Jacobs
  • Robert Könighofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)


Synthesis of program parts is particularly useful for concurrent systems. However, most approaches do not support common design tasks, like modifying a single process without having to re-synthesize or verify the whole system. Assume-guarantee synthesis (AGS) provides robustness against modifications of system parts, but thus far has been limited to the perfect information setting. This means that local variables cannot be hidden from other processes, which renders synthesis results cumbersome or even impossible to realize. We resolve this shortcoming by defining AGS under partial information. We analyze the complexity and decidability in different settings, showing that the problem has a high worst-case complexity and is undecidable in many interesting cases. Based on these observations, we present a pragmatic algorithm based on bounded synthesis, and demonstrate its practical applicability on several examples.


Partial Information Critical Section Perfect Information Tree Automaton Graph Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beeri, C.: On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. on Database Systems 5, 241–259 (1980)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Strategy construction for parity games with imperfect information. I& C 208(10), 1206–1220 (2010)zbMATHGoogle Scholar
  3. 3.
    Bloem, R., Chatterjee, K., Jacobs, S., Könighofer, R.: Assume-guarantee synthesis for concurrent reactive programs with partial information. CoRR, abs/1411.4604 (2014)Google Scholar
  4. 4.
    Brenguier, R., Raskin, J.F., Sassolas, M.: The complexity of admissibility in omega-regular games. In: CSL-LICS, ACM (2014)Google Scholar
  5. 5.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the AMS 138, 295–311 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient synthesis for concurrency by semantics-preserving transformations. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular games. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 78–97. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. In: Logical Methods in Computer Science, vol. 3(3:4) (2007)Google Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365(1-2), 67–82 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chatterjee, K., Henzinger, T.A., Otop, J., Pavlogiannis, A.: Distributed synthesis for LTL fragments. In: FMCAD, pp. 18–25. IEEE (2013)Google Scholar
  12. 12.
    Chatterjee, K., Kößler, A., Schmid, U.: Automated analysis of real-time scheduling using graph games. In: HSCC, pp. 163–172. ACM (2013)Google Scholar
  13. 13.
    Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. Formal Asp. Comput. 26(4), 825–859 (2014)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35 (1962)Google Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)Google Scholar
  16. 16.
    Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, IEEE (2005)Google Scholar
  18. 18.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013)CrossRefGoogle Scholar
  19. 19.
    Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci, 111–121 (1980)Google Scholar
  21. 21.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  22. 22.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC, pp. 60–65. ACM (1982)Google Scholar
  23. 23.
    Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci. 22, 384–406 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Jamroga, W., Mauw, S., Melissen, M.: Fairness in non-repudiation protocols. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 122–139. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults. J. Comput. Syst. Sci. 78(2), 441–460 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS (2005)Google Scholar
  28. 28.
    Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 396–407. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academny of Sciences USA 36, 48–49 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)Google Scholar
  31. 31.
    Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: FOCS. IEEE (1979)Google Scholar
  32. 32.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL (1989)Google Scholar
  34. 34.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: FOCS, pp. 746–757. IEEE (1990)Google Scholar
  35. 35.
    Rabin, M.O.: Automata on Infinite Objects and Churchs Problem. American Mathematical Society (1972)Google Scholar
  36. 36.
    Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. JCSS 4(2), 177–192 (1970)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Schewe, S.: Distributed synthesis is simply undecidable. IPL 114(4), 203–207 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013)CrossRefGoogle Scholar
  40. 40.
    Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In: POPL, pp. 327–338. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roderick Bloem
    • 1
  • Krishnendu Chatterjee
    • 2
  • Swen Jacobs
    • 1
    • 3
  • Robert Könighofer
    • 1
  1. 1.IAIK, Graz University of TechnologyGrazAustria
  2. 2.IST Austria, Institute of Science and TechnologyKlosterneuburgAustria
  3. 3.Reactive Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations