Model Checking Gene Regulatory Networks

  • Mirco Giacobbe
  • Călin C. Guet
  • Ashutosh Gupta
  • Thomas A. Henzinger
  • Tiago Paixão
  • Tatjana Petrov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)

Abstract

The behaviour of gene regulatory networks (GRNs) is typically analysed using simulation-based statistical testing-like methods. In this paper, we demonstrate that we can replace this approach by a formal verification-like method that gives higher assurance and scalability. We focus on Wagner’s weighted GRN model with varying weights, which is used in evolutionary biology. In the model, weight parameters represent the gene interaction strength that may change due to genetic mutations. For a property of interest, we synthesise the constraints over the parameter space that represent the set of GRNs satisfying the property. We experimentally show that our parameter synthesis procedure computes the mutational robustness of GRNs -an important problem of interest in evolutionary biology- more efficiently than the classical simulation method. We specify the property in linear temporal logics. We employ symbolic bounded model checking and SMT solving to compute the space of GRNs that satisfy the property, which amounts to synthesizing a set of linear constraints on the weights.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azevedo, R.B.R., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(7080), 87–90 (2006)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of model checking, pp. 1–975. MIT Press (2008)Google Scholar
  3. 3.
    Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-COMP. Journal of Automated Reasoning 50(3), 243–277 (2013)CrossRefGoogle Scholar
  4. 4.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. Handbook of satisfiability 185, 825–885 (2009)Google Scholar
  5. 5.
    Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. New perspectives in algebraic combinatorics 38, 91–147 (1999)MathSciNetGoogle Scholar
  6. 6.
    Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in computers 58, 117–148 (2003)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Systems Biology 8(1), 84 (2014)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Scientific reports 2 (2012)Google Scholar
  10. 10.
    Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Computational Biology 3(2) (2007)Google Scholar
  11. 11.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)CrossRefGoogle Scholar
  12. 12.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  13. 13.
    Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403(6767), 339–342 (2000)CrossRefGoogle Scholar
  14. 14.
    Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixao, T., Petrov, T.: Model checking gene regulatory networks. arXiv preprint arXiv:1410.7704 (2014)Google Scholar
  15. 15.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. ACM SIGMETRICS Performance Evaluation Review 35(4), 14–21 (2008)CrossRefGoogle Scholar
  17. 17.
    MacCarthy, T., Seymour, R., Pomiankowski, A.: The evolutionary potential of the drosophila sex determination gene network. Journal of Theoretical Biology 225(4), 461–468 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Mateescu, R., Monteiro, P.T., Dumas, E., Jong, H.D.: Ctrl: Extension of ctl with regular expressions and fairness operators to verify genetic regulatory networks. Theoretical Computer Science 412(26), 2854–2883 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)Google Scholar
  20. 20.
    Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(Suppl 6), S9 (2007)Google Scholar
  21. 21.
    Wagner, A.: Does evolutionary plasticity evolve? Evolution, 50(3), 1008–1023 (1996)CrossRefGoogle Scholar
  22. 22.
    Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based analysis of biological computation. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 78–92. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Computer Aided Verification, pp. 279–285. IEEE Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mirco Giacobbe
    • 1
  • Călin C. Guet
    • 1
  • Ashutosh Gupta
    • 1
    • 2
  • Thomas A. Henzinger
    • 1
  • Tiago Paixão
    • 1
  • Tatjana Petrov
    • 1
  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.TIFRMumbaiIndia

Personalised recommendations