Advertisement

Abstract

Ordinary differential equations (ODEs) are often used to model the dynamics of (often safety-critical) continuous systems.

This work presents the formal verification of an algorithm for reachability analysis in continuous systems. The algorithm features adaptive Runge-Kutta methods and rigorous numerics based on affine arithmetic. It is proved to be sound with respect to the existing formalization of ODEs in Isabelle/HOL. Optimizations like splitting, intersecting and collecting reachable sets are necessary to analyze chaotic systems. Experiments demonstrate the practical usability of our developments.

Keywords

Numerical Analysis Rigorous Numerics Validated Numerics Ordinary Differential Equation Continuous System Interactive Theorem Proving 

References

  1. 1.
    Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC 2013, pp. 173–182. ACM, New York (2013)Google Scholar
  2. 2.
    Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2012, pp. 45–54. ACM, New York (2012)Google Scholar
  3. 3.
    Bak, S.: Reducing the wrapping effect in flowpipe construction using pseudo-invariants. In: Proceedings of the 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems, CyPhy 2014, pp. 40–43. ACM, New York (2014)CrossRefGoogle Scholar
  4. 4.
    Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006), Kyoto, Japan (July 2006)Google Scholar
  5. 5.
    Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing 4(4), 361–369 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Boldo, S., Clment, F., Fillitre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: A comprehensive mechanized proof of a C program. Journal of Automated Reasoning 50(4), 423–456 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynamical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.-M., Paşca, I., Rideau, L., Théry, L.: Rigorous polynomial approximation using Taylor models in Coq. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 85–99. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Collins, P., Niqui, M., Revol, N.: A validated real function calculus. Mathematics in Computer Science 5(4), 437–467 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    de Figueiredo, L., Stolfi, J.: Affine arithmetic: Concepts and applications. Numerical Algorithms 37(1-4), 147–158 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)Google Scholar
  13. 13.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP 2015, pp. 129–136. ACM, New York (2015)CrossRefGoogle Scholar
  17. 17.
    Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs (February 2015), Formal proof development, http://afp.sf.net/devel-entries/Ordinary_Differential_Equations.shtml
  19. 19.
    Lammich, P.: Refinement for monadic programs. Archive of Formal Proofs (2012), Formal proof development, http://afp.sf.net/entries/Refine_Monadic.shtml
  20. 20.
    Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 463–468. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Nedialkov, N.: Implementing a rigorous ODE solver through literate programming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties, Mathematical Engineering, vol. 3, pp. 3–19. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  23. 23.
    Platzer, A.: The complete proof theory of hybrid systems. In: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science, LICS 2012, pp. 541–550. IEEE Computer Society, Washington, DC (2012)Google Scholar
  24. 24.
    Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Foundations of Computational Mathematics 2(1), 53–117 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für InformatikTechnische Universität MünchenMunichGermany

Personalised recommendations