MultiGain: A Controller Synthesis Tool for MDPs with Multiple Mean-Payoff Objectives

  • Tomáš Brázdil
  • Krishnendu Chatterjee
  • Vojtěch Forejt
  • Antonín Kučera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)

Abstract

We present MultiGain, a tool to synthesize strategies for Markov decision processes (MDPs) with multiple mean-payoff objectives. Our models are described in PRISM, and our tool uses the existing interface and simulator of PRISM. Our tool extends PRISM by adding novel algorithms for multiple mean-payoff objectives, and also provides features such as (i) generating strategies and exploring them for simulation, and checking them with respect to other properties; and (ii) generating an approximate Pareto curve for two mean-payoff objectives. In addition, we present a new practical algorithm for the analysis of MDPs with multiple mean-payoff objectives under memoryless strategies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Akshay, S., Bertrand, N., Haddad, S., Hélouët, L.: The steady-state control problem for markov decision processes. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 290–304. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)Google Scholar
  6. 6.
    Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on multiple mean-payoff objectives in Markov decision processes. In: LICS 2011, pp. 33–42. IEEE Computer Society (2011)Google Scholar
  7. 7.
    Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: MultiGain: A controller synthesis tool for mdps with multiple mean-payoff objectives. CoRR, abs/1501.03093 (2015)Google Scholar
  8. 8.
    Chatterjee, K.: Markov decision processes with multiple long-run average objectives. In: FSTTCS, pp. 473–484 (2007)Google Scholar
  9. 9.
    Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: A model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without fairness assumption. Distributed Computing 17(1), 65–76 (2004)CrossRefGoogle Scholar
  11. 11.
    Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 317–332. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press (1960)Google Scholar
  13. 13.
    Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully distributed solution to the dining philosophers problem. In: POPL 1981 (1981)Google Scholar
  14. 14.
    Puterman, M.L.: Markov Decision Processes. J. Wiley and Sons (1994)Google Scholar
  15. 15.
    Rabin, M.: N-process mutual exclusion with bounded waiting by 4log2 N-valued shared variable. Journal of Computer and System Sciences 25(1), 66–75 (1982)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons (1998)Google Scholar
  17. 17.
    Černý, P., Gopi, S., Henzinger, T.A., Radhakrishna, A., Totla, N.: Synthesis from incompatible specifications. In: EMSOFT, pp. 53–62 (2012)Google Scholar
  18. 18.
    Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P., Hermanns, H., Dhama, A., Theel, O.E.: Symblicit calculation of long-run averages for concurrent probabilistic systems. In: QEST, pp. 27–36. IEEE Computer Society Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tomáš Brázdil
    • 1
  • Krishnendu Chatterjee
    • 2
  • Vojtěch Forejt
    • 3
  • Antonín Kučera
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.IST AustriaKlosterneuburgAustria
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations