Advertisement

Inferring Simple Solutions to Recursion-Free Horn Clauses via Sampling

  • Hiroshi UnnoEmail author
  • Tachio Terauchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9035)

Abstract

Recursion-free Horn-clause constraints have received much recent attention in the verification community. It extends Craig interpolation, and is proposed as a unifying formalism for expressing abstraction refinement. In abstraction refinement, it is often desirable to infer “simple” refinements, and researchers have studied techniques for inferring simple Craig interpolants. Drawing on the line of work, this paper presents a technique for inferring simple solutions to recursion-free Hornclause constraints. Our contribution is a constraint solving algorithm that lazily samples fragments of the given constraints whose solution spaces are used to form a simple solution for the whole. We have implemented a prototype of the constraint solving algorithm in a verification tool, and have confirmed that it is able to infer simple solutions that aid the verification process.

Keywords

Solution Space Simple Solution Atomic Solution Horn Clause Predicate Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 105–125. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. The Journal of Symbolic Logic 22(03), 250–268 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012)Google Scholar
  5. 5.
    Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying multi-threaded programs. In: POPL, pp. 331–344. ACM (2011)Google Scholar
  6. 6.
    Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244. ACM (2004)Google Scholar
  8. 8.
    Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: POPL, pp. 259–272. ACM (2012)Google Scholar
  9. 9.
    Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model checking. In: PLDI, pp. 222–233. ACM (2011)Google Scholar
  10. 10.
    Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination verification for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 392–411. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpolation. Technical Report MSR-TR-2013-6 (January 2013)Google Scholar
  12. 12.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for verification. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 1–21. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for higher-order programs. In: PEPM, pp. 53–62. ACM (2013)Google Scholar
  16. 16.
    Schrijver, A.: Theory of linear and integer programming. Wiley (1998)Google Scholar
  17. 17.
    Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Terauchi, T.: Dependent types from counterexamples. In: POPL, pp. 119–130. ACM (2010)Google Scholar
  19. 19.
    Terauchi, T., Unno, H.: Relaxed stratification: A new approach to practical complete predicate refinement. In: ESOP (2015) (to appear) Google Scholar
  20. 20.
    Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP, pp. 277–288. ACM (2009)Google Scholar
  21. 21.
    Unno, H., Terauchi, T.: Inferring simple solutions to recursion-free horn clauses via sampling. In: 2015, http://www.cs.tsukuba.ac.jp/~uhiro
  22. 22.
    Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification of higher-order functional programs. In: POPL, pp. 75–86. ACM (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of TsukubaTsukubaJapan
  2. 2.JAISTNomiJapan

Personalised recommendations