In this paper, we construct an infinitary variant of the relational model of linear logic, where the exponential modality is interpreted as the set of finite or countable multisets. We explain how to interpret in this model the fixpoint operator Y as a Conway operator alternatively defined in an inductive or a coinductive way. We then extend the relational semantics with a notion of color or priority in the sense of parity games. This extension enables us to define a new fixpoint operator Y combining both inductive and coinductive policies. We conclude the paper by mentionning a connection between the resulting model of λ-calculus with recursion and higher-order model-checking.


Linear logic relational semantics fixpoint operators induction and coinduction parity conditions higher-order model-checking 


  1. 1.
    Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput. Log. 13(1), 2 (2012)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Bloom, S.L., Ésik, Z.: Iteration theories: the equational logic of iterative processes. EATCS monographs on theoretical computer science. Springer (1993)Google Scholar
  4. 4.
    Bloom, S.L., Ésik, Z.: Fixed-point operations on ccc’s. part i. Theoretical Computer Science 155(1), 1–38 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carraro, A., Ehrhard, T., Salibra, A.: Exponentials with infinite multiplicities. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 170–184. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination. In: Rocca, S.R.D. (ed.) CSL. LIPIcs, vol. 23, pp. 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  7. 7.
    Grellois, C., Melliès, P.-A.: Tensorial logic with colours and higher-order model checking (submitted, 2015),
  8. 8.
    Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of Let and Letrec. Distinguished dissertations series, vol. 1192. Springer (1999)Google Scholar
  9. 9.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119, 447–468 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kobayashi, N., Luke Ong, C.-H.: A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes. In: LICS, pp. 179–188. IEEE Computer Society (2009)Google Scholar
  11. 11.
    Melliès, P.-A.: Categorical semantics of linear logic. In: Interactive models of computation and program behaviour, pp. 1–196 (2009)Google Scholar
  12. 12.
    Miquel, A.: Le calcul des constructions implicites: syntaxe et sémantique. PhD thesis, Université Paris 7 (2001)Google Scholar
  13. 13.
    Montelatici, R.: Polarized proof nets with cycles and fixpoints semantics. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 256–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Salvati, S., Walukiewicz, I.: Evaluation is msol-compatible. In: Seth, A., Vishnoi, N.K. (eds.) FSTTCS. LIPIcs, vol. 24, pp. 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  15. 15.
    Salvati, S., Walukiewicz, I.: Using models to model-check recursive schemes. In: Hasegawa, M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 189–204. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Salvati, S., Walukiewicz, I.: Typing weak MSOL properties (September 2014)Google Scholar
  17. 17.
    Santocanale, L.: A calculus of circular proofs and its categorical semantics. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 357–371. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Santocanale, L.: μ-bicomplete categories and parity games. ITA 36(2), 195–227 (2002)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Seely, R.A.G.: Linear logic, *-autonomous categories and cofree coalgebras. In: Categories in Computer Science and Logic, pp. 371–382. American Mathematical Society (1989)Google Scholar
  20. 20.
    Simpson, A.K., Plotkin, G.D.: Complete axioms for categorical fixed-point operators. In: LICS 2000, USA, June 26-29, pp. 30–41. IEEE Computer Society (2000)Google Scholar
  21. 21.
    Terui, K.: Semantic evaluation, intersection types and complexity of simply typed lambda calculus. In: Tiwari, A. (ed.) RTA. LIPIcs, vol. 15, pp. 323–338. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  22. 22.
    Tsukada, T., Luke Ong, C.-H.: Compositional higher-order model checking via ω-regular games over böhm trees. In: Henzinger, T.A., Miller, D. (eds.) CSL-LICS 2014, Vienna, Austria, July 14-18, p. 78. ACM (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Programmes, SystèmesUniversité Paris Diderot, Sorbonne Paris Cité, Laboratoire PreuvesParisFrance

Personalised recommendations