Advertisement

On the Mints Hierarchy in First-Order Intuitionistic Logic

  • Aleksy SchubertEmail author
  • Paweł Urzyczyn
  • Konrad Zdanowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9034)

Abstract

We study the decidability and complexity of fragments of intuitionistic first-order logic over ( ∀ , → ) determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We prove that fragments Π2 and Σ2 are undecidable and that Σ1 is Expspace-complete.

Keywords

Intuitionistic Logic Object Variable Relation Symbol Proof Assistant Unary Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bonevac, D.: A history of quantification. In: Logic: A History of its Central Concepts. Handbook of the History of Logic, vol. 11, North Holland (2012)Google Scholar
  2. 2.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic (1997)Google Scholar
  3. 3.
    Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Burr, W.: The intuitionistic arithmetical hierarchy. In: Logic Colloquium 1999. Lecture Notes in Logic, vol. 17, pp. 51–59. ASL (1999)Google Scholar
  5. 5.
    Church, A.: Introduction to Mathematical Logic. Princeton (1944)Google Scholar
  6. 6.
    Coq Development Team. The Coq Proof Assistant Reference Manual V8.4 (March 2012), http://coq.inria.fr/distrib/V8.4/refman/
  7. 7.
    Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M., Voronkov, A.: Decidability and complexity of simultaneous rigid E-unification with one variable and related results. Theoretical Computer Science 243(1-2), 167–184 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dowek, G., Jiang, Y.: Eigenvariables, bracketing and the decidability of positive minimal predicate logic. Theoretical Computer Science 360(1-3), 193–208 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fitting, M.: Fundamentals of Generalized Recursion Theory. Elsevier (1981)Google Scholar
  10. 10.
    Fleischmann, J.: Syntactic preservation theorems for intuitionistic predicate logic. Notre Dame Journal of Formal Logic 51(2), 225–245 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Immerman, N.: Descriptive Complexity. Springer (1999)Google Scholar
  12. 12.
    Kreisel, G.: Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulae. J. Symbolic Logic 23(3), 317–330 (1958)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kuśmierek, D.: The inhabitation problem for rank two intersection types. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 240–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Mints, G.E.: Solvability of the problem of deducibility in LJ for a class of formulas not containing negative occurrences of quantifiers. Steklov Inst. 98, 135–145 (1968)zbMATHGoogle Scholar
  15. 15.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-Order Logic. Springer (2002)Google Scholar
  16. 16.
    Orevkov, V.P.: The undecidability in the constructive predicate calculus of the class of formulas of the form ¬¬ ∀ ∃. Doklady AN SSSR 163(3), 581–583 (1965)MathSciNetGoogle Scholar
  17. 17.
    Orevkov, V.P.: Solvable classes of pseudoprenex formulas. Zapiski nauchnyh Seminarov LOMI 60, 109–170 (1976)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Rasiowa, H., Sikorski, R.: On existential theorems in non-classical functional calculi. Fundamenta Mathematicae 41, 21–28 (1954)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Rummelhoff, I.: Polymorphic Π1 Types and a Simple Approach to Propositions, Types and Sets. PhD thesis, University of Oslo (2007)Google Scholar
  20. 20.
    Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: How hard is positive quantification? (2014), http://www.mimuw.edu.pl/~alx/positive2conexp.pdf
  21. 21.
    Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: Positive quantification is not elementary (with restricted instantiation) (2014), http://www.mimuw.edu.pl/~alx/positivenonelem.pdf
  22. 22.
    Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier (2006)Google Scholar
  23. 23.
    Urzyczyn, P.: Inhabitation of low-rank intersection types. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 356–370. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aleksy Schubert
    • 1
    Email author
  • Paweł Urzyczyn
    • 1
  • Konrad Zdanowski
    • 2
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Cardinal Stefan Wyszyński UniversityWarsawPoland

Personalised recommendations